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Abstract 

This report documents the development of the George Mason University 
Geocrowdsourcing Testbed (GMU-GcT), whose purpose is to provide a 
platform for studying the dynamics, limitations, and best practices of 
geocrowdsourcing. We present a comprehensive study of the social 
moderation process in the GMU-GcT and the quality parameters of 
information in the GMU-GcT. We present an analysis of device-based 
positioning in mobile geocrowdsourcing, and use the study and our 
analysis as a context for dynamic application extensions of the GMU-GcT 
in the areas of field-based obstacle moderation, obstacle interaction, and 
accessible routing. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Unit Conversion Factors 

MMuullttiippllyy  BByy  TToo  OObbttaaiinn  

feet 0.3048 meters 
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miles per hour 0.44704 meters per second 
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1   Introduction and Background 

One of the most significant contemporary trends in the geospatial sciences 
is the use of map-based crowdsourcing for collecting, confirming, editing, 
and displaying geospatial data, referred to by various practitioners and 
observers as crowdsourced geospatial data (CGD), geocrowdsourcing, or 
volunteered geographic information (VGI). Sui et al. (2013, 1)1 describe 
this phenomenon as part of a “profound transformation on how 
geographic data, information, and knowledge are produced and 
circulated,” an important part of the current “exaflood of digital data 
growth.”2  McCartney et al. (2015)3 note that this phenomenon is 
permeating the most basic geographic data production strategies of the 
United States Geological Survey, the most prolific civilian mapping agency 
in the United States. Liu and Palen trace the phenomenon through a wide 
range of emergency response applications in the government, non-profit, 
and media sectors (2010), noting the influence of citizen-led 
geocrowdsourcing on professional practice. They advocate for an emerging 
environment of “interoperability between professional and participatory 
forms of geotechnology”. 4,5   

Going back at least eight years to a time when geocrowdsourcing was just 
emerging, Dr. Michael F. Goodchild published a series of seminal articles 
outlining several significant benefits associated with this general 
approach; namely, the local geographic expertise of the contributors, who 
are more familiar with the local features being mapped; the speed with 
which information can be collected and mapped; and finally, the greatly 
reduced costs associated with what is typically a very expensive activity 
(2007, 2009).6,7  Researchers at George Mason University (GMU) have 
                                                                    
1 Daniel Sui, Sarah Elwood, and Michael F. Goodchild, eds., Crowdsourcing Geographic Knowledge 

Volunteered Geographic Information (VGI) in Theory and Practice. (New York, NY: Springer, 2013). 
2 Ibid. 
3 Elizabeth A. McCartney et al., “Crowdsourcing The National Map,” Cartography and Geographic 

Information Science 42, no. sup1 (2015): 54–57. 
4 Ibid. 
5 S. B Liu and L. Palen, “The New Cartographers: Crisis Map Mashups and the Emergence of 

Neogeographic Practice,” Cartography and Geographic Information Science 37, no. 1 (2010): 69–90. 
6 Michael F. Goodchild, “Citizens as Sensors: The World of Volunteered Geography,” GeoJournal 69, no. 

4 (December 2007): 211–21. 
7 Michael F. Goodchild, “NeoGeography and the Nature of Geographic Expertise,” Journal of Location 

Based Services 3, no. 2 (June 2009): 82–96, doi:10.1080/17489720902950374. 
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explored the topic of crowdsourced geospatial data extensively, through 
the support of the United States Army Corps of Engineer’s Geospatial 
Research Laboratory. The results of this work have been published in a 
series of technical reports, conference proceedings, and journal articles 
documenting this work from its inception and to the present day (Rice et 
al. 2011, 2012a, 2012b, 2013a 2013b, 2014, Paez 2014, Qin et al. (2015a, 
2015b) Rice 2015, and Rice et al. 2015)8,9,10,11,12,13,14,15,16, 17,18  The research 
work from these publications has been oriented toward exploring the 
emerging phenomena (Rice et al. 2012b), data production techniques 
(2012b, 2013b), accuracy assessment methods (2012b, 2013b, 2014), 
fitness-for-use evaluations (2012b), exemplar applications and projects 
(2012b, 2014), and novel implementations (2012b, 2014). These research 
topics address the typical early questions associated with a nascent 
technological transformation, where scientists, academics, and 

                                                                    
8 Matthew T. Rice et al., “Integrating User-Contributed Geospatial Data with Assistive Geotechnology 

Using a Localized Gazetteer,” in Advances in Cartography and GIScience. Volume 1, ed. Anne Ruas, 
Lecture Notes in Geoinformation and Cartography (Springer Berlin Heidelberg, 2011), 279–91, 
http://dx.doi.org/10.1007/978-3-642-19143-5_16. 

9 Matthew T. Rice et al., “Supporting Accessibility for Blind and Vision-Impaired People With a Localized 
Gazetteer and Open Source Geotechnology,” Transactions in GIS 16, no. 2 (April 2012): 177–90, 
doi:10.1111/j.1467-9671.2012.01318.x. 

10 Matthew T. Rice et al., “Crowdsourced Geospatial Data: A Report on the Emerging Phenomena of 
Crowdsourced and User-Generated Geospatial Data,” Annual (Fairfax, VA: George Mason University, 
November 29, 2012), http://www.dtic.mil/dtic/tr/fulltext/u2/a576607.pdf. 

11 Matthew T. Rice et al., “Crowdsourcing Techniques for Augmenting Traditional Accessibility Maps with 
Transitory Obstacle Information,” Cartography and Geographic Information Science 40, no. 3 (June 
2013): 210–19, doi:10.1080/15230406.2013.799737. 

12 Matthew T. Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the 
Motivations, Design, Creation and Assessment of a Testbed Environment for Accessibility,” US Army 
Corps of Engineers, Engineer Research and Development Center, US Army Topographic Engineering 
Center Technical Report, Data Level Enterprise Tools Workgroup (Fairfax, VA: George Mason University, 
September 2013), 
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA588474. 

13 Matthew T. Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial 
Data: A Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed,” Annual (Fairfax, VA: George Mason University, September 23, 2014). 

14 Fabiana I. Paez, “Recruitment, Training, and Social Dynamics in Geo-Crowdsourcing for Accessibility” 
(Master of Science, George Mason University, 2014). 

15 Han Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments,” GeoJournal, no. 
10.1007/s10708–015–9659– x (2015): 1–18. 

16 Han Qin et al., “Obstacle Characterization in a Geocrowdsourced Accessibility System,” ISPRS Annals 
of Photogrammetry, Remote Sensing and Spatial Information Sciences 1 (2015): 179–85. 

17 Rebecca M. Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping 
Applications: A George Mason University Case Study” (Master’s of Science Thesis, George Mason 
University, 2015). 

18 Rebecca M. Rice et al., “Position Validation in Crowdsourced Accessibility Mapping,” Cartographica: 
The International Journal for Geographic Information and Geovisualization 50, no. 4 (n.d.): (in press). 
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practitioners focus on defining the terminology, placing boundaries on the 
field, and exploring the early implementations and activity. The current 
research, conducted in 2014 and 2015, asks: “What can be done in real 
world settings with geocrowdsourced data?”, “What are the practical 
limitations of the quality assessment processes?” and “Can 
geocrowdsourced data be used in real dynamic, field-based settings?”  This 
report addresses these questions, which focus on practical quality control, 
moderation strategies, and dynamic real-world uses of geocrowdsourced 
data. As a vehicle to explore these issues, we present the George Mason 
University Geocrowdsourcing Testbed (GMU-GcT), which was developed 
to explore these questions and many more. The GMU-GcT is a descendent 
of earlier mapping systems developed to help blind, visually-impaired, and 
mobility-impaired individuals navigate through unfamiliar urban areas 
(Loomis et al. 2005, Golledge et al. 2005 and 2006, and Rice et al. 
2005)19,20,21,22. It is also an outgrowth of earlier work on emerging 
technological issues associated with distributed geographic information 
services and information sharing communities (Goodchild et al. 2005)23. 
The context for the GMU-GcT and the purposes that it serves are briefly 
explained in the following section as an introduction to this report. While 
supplying the necessary geoaccessibility functionality, an underlying value 
of the GMU-GcT is what it can tell us about the dynamics of 
geocrowdsourcing. Where possible, these dynamics and lessons learned 
will be emphasized throughout this report.  

The GMU Geocrowdsourcing Testbed 

In many geospatial settings, the field-based collection of geospatial data is 
a critical task. Within dynamic environments, these data collection 
activities are more challenging due to the rapid updates required to 
maintain currency and validity. GMU, for example, produces a Physical 
                                                                    
19 Jack M. Loomis et al., “Personal Guidance System for People with Visual Impairment: A Comparison of 

Spatial Displays for Route Guidance,” Journal of Visual Impairment & Blindness 99, no. 4 (2005): 219. 
20 Reginald G. Golledge, Matthew Rice, and Daniel Jacobson, “A Commentary on the Use of Touch for 

Accessing On-Screen Spatial Representations: The Process of Experiencing Haptic Maps and 
Graphics,” The Professional Geographer 57, no. 3 (August 2005): 339–49, doi:10.1111/j.0033-
0124.2005.00482.x. 

21 Reginald G. Golledge, Matthew T. Rice, and R. Daniel Jacobson, “Multimodal Interfaces for 
Representing and Accessing Geospatial Information,” in Frontiers of Geographic Information 
Technology (Springer, 2006), 181–208. 

22 Matt Rice et al., “Design Considerations for Haptic and Auditory Map Interfaces,” Cartography and 
Geographic Information Science 32, no. 4 (2005): 381–91. 

23 Michael F. Goodchild et al., “Report of the NCGIA Specialist Meeting on Spatial Webs” (Santa Barbara, 
CA: NCGIA, April 2005). 
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Accessibility Map each August, and publishes the map online in an 
attempt to highlight accessible pathways and areas of significant 
construction activity on what is a rapidly changing campus environment 
(Figure 1). Provided in static PDF format, this map is updated once a year, 
which makes it out-of-date virtually days after it is released. Certain 
features, such as walkways that meet the Americans with Disabilities Act 
(ADA) standard design criteria for running slope, are drawn with a green 
line symbol and it is these features that have some longevity. A major 
problem, however, emerges when these features are made inaccessible by 
construction fencing, temporary barricades, and other transient activity.  

FFiigguurree  11..  GGMMUU''ss  PPhhyyssiiccaall  AAcccceessssiibbiilliittyy  MMaapp  2244  

For the 250-300 blind, visually-impaired, and mobility-impaired students, 
faculty, and staff, changes to the GMU campus walkways can present great 
difficulty from the perspective of navigation and wayfinding, which involve 
the careful planning and repetitive use of pre-selected, accessible 
navigation corridors. When transient obstacles appear on navigation 
pathways (Figure 2), these individuals are required to improvise through 
backtracking and by using alternative pathways.  

                           
24 http://eagle.gmu.edu/map/pdfs/fairfax_access.pdf [accessed, August 10, 2015] 
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FFiigguurree  22..  TTrraannssiieenntt  NNaavviiggaattiioonn  OObbssttaaccllee  

Based on the seminal work of Loomis et al. (2005, Figure 3)25, Marston et 
al. (2006)26, and Golledge et al. (2006)27; Rice et al. (2011, 2013b)28,29 
presented the conceptual design of a geocrowdsourcing system for 
collecting transient obstacle information to assist blind, visually-impaired, 
and mobility-impaired individuals navigate through unfamiliar 
environments. The resulting GMU Geocrowdsourcing Testbed (GMU-GcT) 
has been presented and demonstrated in several previous publications, 
notably Rice et al. (2013a, 2013b, and 2014).30 ,31 ,32  The purpose of the 
system is to build a layer of quality-checked and validated obstacle data 
with known positional and temporal characteristics that can be 
disseminated to the public through our website, distributed as a data 
source via KML, and used in dynamic routing and obstacle avoidance 

                                                                    
25 Loomis et al., “Personal Guidance System for People with Visual Impairment: A Comparison of Spatial 

Displays for Route Guidance.” 
26 James R. Marston et al., “Evaluation of Spatial Displays for Navigation Without Sight,” ACM Trans. 

Appl. Percept. 3, no. 2 (April 2006): 110–24, doi:10.1145/1141897.1141900. 
27 Golledge, Rice, and Jacobson, “Multimodal Interfaces for Representing and Accessing Geospatial 

Information.” 
28 Rice et al., “Integrating User-Contributed Geospatial Data with Assistive Geotechnology Using a 

Localized Gazetteer.” 
29 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
30 Rice et al., “Crowdsourcing Techniques for Augmenting Traditional Accessibility Maps with Transitory 

Obstacle Information.” 
31 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
32 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed.” 
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scenarios. As discussed in Liu and Pelan (2010)33, the future of 
crowdsourcing systems such as ours, will likely be as a hybrid combination 
of professional, authoritative elements and citizen-based neo-geographic 
elements.  

 

FFiigguurree  33..  UUCCSSBB  PPeerrssoonnaall  GGuuiiddaannccee  SSyysstteemm,,  cciirrccaa  22000033  

Chapter 2 of this report provides an overview of mobile-device capabilities 
for geocrowdsourcing and specifically, constraints associated with mobile 
device global positioning systems (GPS). Chapter 3 provides a study of the 
social moderation process in geocrowdsourcing and what it can provide for 
the GMU-GcT. In Chapter 4 we look at the dynamic engagement of 
obstacle data with the mobile, field-based incarnations of the GMU-GcT 
and general positioning capabilities of GPS-enabled mobile devices. 
Chapter 5 explores an extension of the GMU-GcT in the area of routing 
analysis. The final chapter of this report summarizes selected research 
themes for this project and addresses what are viewed as important future 
issues in geocrowdsourcing. The combined retrospective and future look at 
geocrowdsourcing is drawn from our past technical reports and the 
research work presented here, as well as topics that we suggest will be 
important in the upcoming years.  

 

                                                                    
33 Liu and Palen, “The New Cartographers.” 
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2   Mobile Devices and Geocrowdsourcing 

In his research publications George Mason University (GMU) Associate 
Professor Dieter Pfoser describes an explosion of user generated content 
(UGC) available over the Internet (Pfoser 2011, Crooks et al. 2014)34,35. He 
describes contemporary UGC as staggering in size and growing larger at a 
rapid pace. His observations echo Sui et al.’s 2013 warning of an 
impending “exaflood” of digital information. Both authors suggest that 
digital geospatial content forms an important element in this tremendous 
growth, and a reason for this growth is the widespread availability of 
location-aware mobile devices used to collect data, photographs, 
observations, and information. Pfoser describes this geospatially-oriented 
UGC as a rich mixture of quantitative and qualitative geospatial 
information, ranging from georeferenced data collected by device GPS to 
text-based travel narratives, facilitated by the information collected and 
stored by location-aware smart phones.  

This chapter looks at the primary mobile tool associated with this growing 
body of geospatially-oriented UGC: the GPS-enabled smart phone. We 
explore the use of mobile devices for many geocrowdsourcing activities, 
including several current applications from a variety of different domains, 
where the mobile device and its positioning capabilities facilitate the 
central functions of the application. We also present a review of mobile 
phone-based GPS capabilities, and a study by project collaborators on the 
positioning constraints of mobile phone GPS used in the field.  

GPS-enabled Dynamic Geocrowdsourcing Applications 

One of the most significant drivers of GPS-based data collection and GPS-
embedded device production is athletics and recreation. The tracking of 
athletes and measures of athletic performance are of high interest to 
scientists and trainers, who use GPS tracking for speed and distance 
measurements in tennis and other court-constrained sports (Duffield et al. 
2010)36. Applications in this area include GPS-enabled geosocial and 

                                                                    
34 Dieter Pfoser, “On User-Generated Geocontent,” in Advances in Spatial and Temporal Databases 

(Springer, 2011), 458–61. 
35 Andrew Crooks et al., “Crowdsourcing Urban Form and Function,” International Journal of 

Geographical Information Science, no. ahead-of-print (2014): 1–22. 
36 Rob Duffield et al., “Accuracy and Reliability of GPS Devices for Measurement of Movement Patterns 
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geocrowdsourcing applications such as Strava (Figure 4) which track and 
map the running events of end-users and facilitates social interaction 
through a geosocial community. Strava uses mobile GPS to calculate 
distance, speed, rate, elevation gain, and if equipped with GPS waypoints 
for a pre-defined running course, can calculate distance deviations from 
the defined course. Strava uses a map-based and social-community based 
engagement strategy to encourage connections between athletes in local 
areas. The map-based tracking functionality using device GPS represents a 
key capability in the mobile tools designed for the GMU-GcT, while the 
geosocial functionality in this app represents an important recruitment 
and engagement aspect of geocrowdsourcing, addressed by Paez (2014) 
and Rice et al. (2014).  

                                                                                                                                           

 

in Confined Spaces for Court-Based Sports,” Journal of Science and Medicine in Sport 13, no. 5 
(2010): 523–25. 
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Figuure  4..  GPS--enabled  geosocial  athletics  and  ruun--tracking  applications3377  

Geocaching is the modern incarnation of a treasure hunt game, where 
GPS-enabled mobile devices are used to locate hiding places, called 
‘caches’ and track items left in the cache and carried to other caches by 
participants. The most popular mobile geocaching application, produced 
by Groundspeak, Inc. and distributed through the Apple App Store as 
“Geocaching,” contains map-based and GPS-based searching capabilities, 
with orientation and distance displays, including an uncertainty estimate 
for GPS, popup reminders about device GPS capabilities and the current 
search radius (Figure 5). There are more than 2 million geocaches hidden 

                           
37 https://www.strava.com/ [accessed August 23, 2015] 
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in 184 countries world-wide, and an estimated user base of 3-4 million.38,39 
The spatial searching functionality in the Geocaching App and focus on 
distance between user and object using mobile device GPS is similar to 
functionality in mobile GMU-GcT tools discussed in this report. 

 

FFiigguurree  55..  GGeeooccaacchhiinngg  GGPPSS--eennaabblleedd  mmoobbiillee  aapppplliiccaattiioonn  

Many contemporary geocrowdsourcing applications are transportation-
related, which reflects the view expressed by Pfoser and others, that one of 
the most significant emerging trends in current geocrowdsourcing is the 
generation of tracking data used for transportation analysis and related 
transportation and logistics activities. The combination of dynamic data 
collection and analysis is at the foundation of the mobile GMU-GcT 
activities profiled in this report, where we focus on the interaction of end-
users and moderators with location-aware mobile devices that both 
contribute and receive geocrowdsourced data from the field.  

The local public transportation network serving the City of Fairfax and 
GMU includes signage with QR codes that when scanned with a mobile 
device, opens a dynamic bus tracking service that provides distance and 
time estimates between a user’s location and the bus’s location (Figure 6). 
This tracking data is dynamically updated through a web application and a 
GPS bus tracking system. On the back end, the next bus service can 
analyze the patterns associated with service requests generated from 

                           
38 http://www.geocaching.com/blog/2013/02/celebratin-two-million-geocaches-list-by-country/ 

[accessed August 23, 2015] 
39 http://forums.groundspeak.com/GC/index.php?showtopic=241632 [accessed August 23, 2015] 
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specific QR codes, and provide information to public transportation 
providers about location-specific queries, which could be used to improve 
infrastructure or focus service on locations with high QR code scanning 
activity.  

 

FFiigguurree  66..  SSiiggnn--mmoouunntteedd  QQRR  ccooddee  ffoorr  CCiittyy  ooff  FFaaiirrffaaxx  CCUUEE  bbuuss  ttrraacckkiinngg  tthhrroouugghh  tthhee  NNeexxttBBuuss  
SSeerrvviiccee4400  

The GPS Alarm Clock application (Figure 7) is a novel application for 
travelers and public transit riders, similar to the accessibility application 
developed by Barbeau et al. (2010),41  to provide notification of proximity 
to a planned stop. This is targeted toward inattentive or sleeping 
passengers, as well as disabled travelers who need advanced warning of an 
approaching stop. The application uses the built-in GPS device uncertainty 
estimates, provided as a blue bubble around the present GPS location, as 
well as a distance threshold for triggering warnings. The functionality in 
this application is directly relevant to our interest in providing mobile 
obstacle notifications through the GMU-GcT. 

                           
40 https://www.nextbus.com  [accessed August 23, 2015] 
41 Sean J. Barbeau et al., “Travel Assistance Device: Utilising Global Positioning System-Enabled Mobile 

Phones to Aid Transit Riders with Special Needs,” Intelligent Transport Systems, IET 4, no. 1 (2010): 
12–23. 
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FFiigguurree  77..  LLooccaattiioonn  aanndd  ssccaallee--sseennssiittiivvee  GGPPSS  AAllaarrmm  ffoorr  ccoommmmuutteerrss  

Finally, Yik Yak is a geosocial application that has received a great deal of 
attention over the last two years, due to the anonymous nature of the 
interactions among end-users. The concept of the geosocial application is a 
geographically-defined user community, which includes all users within a 
specific radius of the end-user. This user community dynamically changes 
based on the location of the device. As a useful dynamic element, the 
application shuts down when it detects that it is located near to or inside of 
the footprint for a public school facility, other than colleges and 
universities, where it operates freely (Figure 8). This geofencing 
functionality was implemented to curb the anonymous trolling and anti-
social elements that became widespread among younger users. This novel 
method for controlling mobile device interaction using geographic location 
highlights the capabilities for device-based GPS to be a part of 
fundamental interaction in geocrowdsourcing and geosocial media. Figure 
37 shows the application being shut down due to proximity to Fairfax High 
School.  
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FFiigguurree  88..  YYiikk--YYaakk  ggeeoossoocciiaall  mmoobbiillee  aapppp  wwiitthh  ggeeooffeenncciinngg  ccaappaabbiilliittiieess4422  

Mobile Device GPS Accuracy Studies 

In a 2009 study of the iPhone 3G, Zandbergen studied the horizontal error 
patterns for mobile device GPS, finding a Root Mean Square Error 
(RMSE) of 8.3 meters, and a maximum error of 18.5 meters (Figure 9)43. 
The Garmin GPS device used as a control had a maximum error of 1.4m 
and an RMSE of 1.0 meters.  

                           
42 http://www.yikyakapp.com/ [accessed August 23, 2015] 
43 Paul A. Zandbergen, “Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular 

Positioning,” Transactions in GIS 13, no. s1 (2009): 5–25. 
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FFiigguurree  99..  HHoorriizzoonnttaall  eerrrroorr  pplloott  ffoorr  GGaarrmmiinn  aanndd  iiPPhhoonnee  GGPPSS,,  ffrroomm  ZZaannddbbeerrggeenn  ((22000099))  

An earlier study by Modsching et al. (2006)44 looked at GPS accuracy for 
travelers and tourists in a medium-sized city. They found error rates for 
four different consumer-level GPS receivers to be between 2.5 meters (for 
open areas such as public squares) and 15.4 meters (for urban streets with 
four story buildings on each side, Figure 10). The Modsching et al. study 
provides estimates for GPS accuracy in the type of public spaces and 
buildings heights encountered by end-users of the GMU-GcT.  

 

                                                                    
44 Ibid. 



15

FFiigguurree  1100..  GGPPSS  aaccccuurraaccyy  ssttuuddyy  ffoorr  ttwwoo  uurrbbaann  sseettttiinnggss,,  ffrroomm  MMooddsscchhiinngg  eett  aall..  ((22000066))  

GMU Geocrowdsourcing Testbed Mobile Device GPS Accuracy Study 

GMU Doctoral student and research collaborator Rodney Vese has been an 
instrumental part of the State of Maryland’s public mapping and GIS 
efforts, with responsibility for studying the feasibility of citizen-based 
mapping of public trails. In order to understand how to conflate trail data 
geocrowdsourced with mobile devices, and provide quality assessment for 
position, Rodney has begun a large study of consumer-device capabilities 
under a variety of conditions and circumstances. Some of his preliminary 
data is presented here, along with error estimates that confirm the 
estimates of Zandbergen (2009)45 and Modsching et al. (2006)46.  

Vese uses methodology based on the Frechet distance, which is a measure 
for the distance between two curves, proposed by Frechet (1906)47. In a 
much later study, Alt et al. (1995)48 gave an algorithm for the computation. 
A popular illustration of the Frechet distance is the following: Suppose a 
person is walking his dog, the person is walking on the one curve and the 

                           
45 Ibid. 
46 Marko Modsching, Ronny Kramer, and Klaus ten Hagen, “Field Trial on GPS Accuracy in a Medium 

Size City: The Influence of Built-Up,” in 3rd Workshop on Positioning, Navigation and Communication, 
2006, 209–18. 

47 M. Maurice Fréchet, “Sur Quelques Points Du Calcul Fonctionnel,” Rendiconti Del Circolo Matematico 
Di Palermo (1884-1940) 22, no. 1 (1906): 1–72. 

48 Helmut Alt and Michael Godau, “Computing the Fréchet Distance between Two Polygonal Curves,” 
International Journal of Computational Geometry & Applications 5, no. 01n02 (1995): 75–91. 
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dog on the other. Both are allowed to control their speed but they are not 
allowed to go backwards. Then the Frechet distance of the curves is the 
minimal length of a leash that is necessary for both to walk the curves 
from beginning to end. Figure 11, from Brakatsoulas et al. (2005)49 
provides a visual example of the Frechet distance for two curves, Q and P.  

 

FFiigguurree  1111..  FFrreecchheett  DDiissttaannccee  ffoorr  ccuurrvveess  PP  aanndd  QQ,,  ffrroomm  BBrraakkaattssoouullooss  eett  aall..  ((22000055))  

This general methodology is used to compare the curve generated by a 
survey-grade Trimble GPS with iPhone4, iPhone5, and iPhone6 GPS 
curves. The mobile devices utilize Collector for ArcGIS to automatically 
stream device GPS coordinates to ArcGIS Online while being carried along 
trails or pedestrian pathways. The mobile GPS data is collected and stored 
using editable feature service layers from Esri’s Spatial Database Engine 
(ArcSDE), with double precision coordinates preserved through the entire 
processing chain. Additional post-processing routines are used to check 
data consistency and add calculated Frechet distances to each segment. An 
excerpt from these mobile device tracks is shown in Figure 12 and Figure 
13 (below), as part of a large data collection transect through our study 
area. The transect began in the center of the GMU campus, proceeding 1.5 
miles to the center of the City of Fairfax, and returned on the same path, 
using the sidewalks.  

                           
49 Sotiris Brakatsoulas et al., “On Map-Matching Vehicle Tracking Data,” in Proceedings of the 31st 

International Conference on Very Large Data Bases (VLDB Endowment, 2005), 853–64. 
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FFiigguurree  1122..  GGrroouunndd--lleevveell  vviieeww  ooff  mmoobbiillee  ddeevviiccee  GGPPSS  ttrraacckkss,,  FFaaiirrffaaxx,,  VViirrggiinniiaa  

 

FFiigguurree  1133..  OOvveerrhheeaadd  vviieeww  ooff  mmoobbiillee  ddeevviiccee  GGPPSS  ttrraacckkss,,  FFaaiirrffaaxx,,  VViirrggiinniiaa  
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After the data collection transect is finished, Frechet distances are 
calculated and stored as attributes of each curve segment using post-
processing routines in MATLAB.  Average Frechet distances for each 
device are calculated for 30-second time intervals and stored separately.  
Figure 14, Figure 15, and Figure 16 (below) show average Frechet distances 
for a section of this transect near the north side of the GMU campus, with 
the iPhone 4 have a Frechet distance of 6.42 meters, iPhone 5 having a 
Frechet distance of 5.62 meters, and iPhone 6 having a Frechet distance of 
4.75 meters.  

Table 1 has a summary of average Frechet distance for each device along 3 
component tracks of the larger transect, and an average Frechet distance 
for the total observations from all tracks. In this case, the average Frechet 
distance for the iPhone 4 is 10.51 meters, the iPhone 5 is 6.72 meters, and 
the iPhone 6 is 5.92 meters.  

 

FFiigguurree  1144..  MMoobbiillee  GGPPSS  ttrraacckkss  aanndd  aavveerraaggee  FFrreecchheett  ddiissttaannccee  ffoorr  iiPPhhoonnee  44  
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FFiigguurree  1155..  MMoobbiillee  GGPPSS  TTrraacckkss  aanndd  AAvveerraaggee  FFrreecchheett  DDiissttaannccee,,  iiPPhhoonnee  55  
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FFiigguurree  1166..  MMoobbiillee  GGPPSS  TTrraacckkss  aanndd  AAvveerraaggee  FFrreecchheett  DDiissttaannccee,,  iiPPhhoonnee  66  

TTaabbllee  11..  AAvveerraaggee  FFrreecchheett  ddiissttaanncceess  ffoorr  mmoobbiillee  ddeevviiccee  GGPPSS  ((mmeetteerrss))  wwiitthh  wweeiigghhtteedd  aavveerraaggee..  
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In addition to average Frechet distances, the mobile device GPS accuracy 
study conducted for this research project looked at the type of canopy 
cover (or alternatively), land use/land cover as a factor responsible for 
significant variation in GPS accuracy. The Modsching study (2006) found 
mobile device GPS to be more accurate in open areas, such as public 
squares, and less accurate near tall buildings. Preliminary work by Vese in 
the state of Maryland confirms this general trend. In the local study area, 
Vese found mobile device GPS tracks to have more variation in areas with 
tall buildings, likely due to multipath error, where the signal received by 
the mobile GPS is being reflected from tall structures. Figure 17 shows this 
dynamic, with all GPS tracks within 6.62 meters of each other near the 
City of Fairfax City Hall, which is characterized as ‘Open Canopy’. The area 
just 1/3 mile north on University Drive, near the GMU Commerce building 
shows mobile device tracks spreading to a width of 23.16 meters, where 
larger 5-6 story buildings predominate.  

 

FFiigguurree  1177..  MMoobbiillee  GGPPSS  ttrraacckkss,,  OOppeenn  CCaannooppyy  ((AA))  aanndd  UUrrbbaann  ((BB))  

A thorough analysis of canopy coverage types and average Frechet 
distance is presented in Figure 18, Figure 19, Figure 20, Figure 21 and 
Table 3, from a collection of multiple data transects through the State of 
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Maryland. The average Frechet distance for areas with Open Canopy was 
7.53 meters, Partial Canopy was 7.07 meters, Heavy Canopy was 9.47 
meters, and Urban Canopy (including taller buildings) was 14.83 meters. 
Each of these average Frechet distances were calculated across multiple 
transects with thousands of individual observations. An analysis of 
variance (ANOVA) for the four canopy types (Table 3) shows an F-statistic 
of 6.02 and an associated p-value of 0.0014. The critical F-statistic value 
for this test (with 3 and 49 degrees of freedom and alpha = 0.05) is 2.794. 
Based on these numbers, we can conclude that the null hypothesis, 
suggesting no significant variation between treatment groups (canopy 
types), can be rejected. For the four canopy types, at least one of them is 
different than the others.  

 

 

FFiigguurree  1188..  MMoobbiillee  GGPPSS  ddaattaa  ttrraannsseecctt  wwiitthh  aavveerraaggee  FFrreecchheett  ddiissttaannccee  ((OOppeenn  CCaannooppyy))  
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FFiigguurree  1199..  MMoobbiillee  GGPPSS  ddaattaa  ttrraannsseecctt  wwiitthh  aavveerraaggee  FFrreecchheett  ddiissttaannccee  ((PPaarrttiiaall  CCaannooppyy))  

 

 

FFiigguurree  2200..  MMoobbiillee  GGPPSS  ddaattaa  ttrraannsseecctt  wwiitthh  aavveerraaggee  FFrreecchheett  ddiissttaannccee  ((HHeeaavvyy  CCaannooppyy))  
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FFiigguurree  2211..  MMoobbiillee  GGPPSS  ddaattaa  ttrraannsseecctt  wwiitthh  aavveerraaggee  FFrreecchheett  ddiissttaannccee  ((UUrrbbaann  CCaannooppyy))  

 

Additional pairwise tests for the average Frechet distances by canopy type 
(Table 3  and Table 4), with the Bonferroni correction, indicate that only 
the Heavy Canopy type is different than the Open and Partial Canopy. All 
other pairwise comparisons yield results where the null hypothesis 
(equality of means) cannot be rejected. It is important to note that the 
Urban Canopy type (Figure 21, Table 2, Table 3, and Table 4) has a much 
larger variance than the other types, and therefore cannot be distinguished 
as different during the pairwise tests for means. The shape of the graph for 
Urban Canopy in Figure 21 reflects the same variation seen in Figure 
17(B), where tall buildings result in interference, likely from multipath 
error.  
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TTaabbllee  22..  SSiinnggllee  ffaaccttoorr  AANNOOVVAA  ffoorr  CCaannooppyy  TTyyppee  

 
TTaabbllee  33..  TTeesstt  ffoorr  EEqquuaalliittyy  ooff  VVaarriiaanncceess  ffoorr  AAvveerraaggee  FFrreecchheett  DDiissttaannccee  bbyy  CCaannooppyy  TTyyppee..  GGrreeeenn  

ffiigguurreess  sshhooww  hhoommoosscceeddaassttiicc  ppaaiirrss,,  rreedd  ffiigguurreess  sshhooww  hheetteerroosskkeeddaassttiicc  ppaaiirrss..    

 

TTaabbllee  44..  PPaaiirrwwiissee  TT--TTeessttss  ffoorr  AAvveerraaggee  FFrreecchheett  DDiissttaannccee  bbyy  CCaannooppyy  TTyyppee..  GGrreeeenn  ffiigguurreess  sshhooww  
mmeeaannss  wwiitthh  ssttaattiissttiiccaall  eeqquuaalliittyy,,  oorraannggee  ffiigguurreess  sshhooww  mmeeaannss  wwiitthh  iinneeqquuaalliittyy..  
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For GPS-based mobile device positioning, we can assume that positioning 
will vary based on whether or not the end-user is near tall buildings, or 
perhaps under heavy canopy. Zandbergen cites a GPS horizontal accuracy 
figure of 8.3 meters (RMSE) with a maximum of 18.5 meters. Modsching 
et al. found the GPS horizontal accuracy to vary between 2.5 and 15.4 
meters, based on whether the location was open or near tall buildings. 
Vese’s GPS study yields confirmatory results, with average Frechet 
distances between 7.52 and 14.8 meters generally, and for our specific 
study area, between 5.92 meters and 10.51 meters, depending on the 
device used. The Vese GPS study, and earlier studies by Zandbergen and 
Modsching et al. suggest that mobile devices have approximate accuracies 
between 2.5 meters and 15.4 meters, likely somewhere between. 
Applications with a need for higher accuracy, i.e., transportation and 
navigation, often employ additional methods to snap the device’s map-
based position to the nearest network, an item explored by Karagiorgou, et 
al. (2012), Pfoser (2000), Pfoser et al. (2003, 2005), and Brakatsoulas et 
al. (2005)50, 51, 52, 53, 54. For the GMU-GcT, the dynamics for obstacle 
interaction will be guided by additional uncertainty and interaction 
buffering, and for moderator search, the mobile GPS accuracy will place 
the moderator well within the normal visual identification distances.  

The quality of the obstacle positioning in the GMU-GcT is based both on 
the device GPS accuracy (for reports submitted by end-users) as well as 
map-based positioning and multiple aspects of moderated position 
validation, as discussed in Chapter 3 of this report, Rice (2015)55, and Rice 
et al. (2015)56. For the GMU-GcT, we use information from GPS accuracy 
studies summarized above to control the interaction distances between 
end-users and moderators with mobile devices, and obstacles in our 

                                                                    
50 Sophia Karagiorgou and Dieter Pfoser, “On Vehicle Tracking Data-Based Road Network Generation,” in 

Proceedings of the 20th International Conference on Advances in Geographic Information Systems 
(ACM, 2012), 89–98. 

51 Dieter Pfoser, “Issues in the Management of Moving Point Objects” (Department of Computer Science, 
the Faculty of Engineering and Science, Aalborg University, 2000). 

52 Dieter Pfoser and Christian S. Jensen, “Indexing of Network Constrained Moving Objects,” in 
Proceedings of the 11th ACM International Symposium on Advances in Geographic Information 
Systems (ACM, 2003), 25–32. 

53 Dieter Pfoser and Christian S. Jensen, “Trajectory Indexing Using Movement Constraints*,” 
GeoInformatica 9, no. 2 (2005): 93–115. 

54 Brakatsoulas et al., “On Map-Matching Vehicle Tracking Data.” 
55 Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping Applications: A George 

Mason University Case Study.” 
56 Rice et al., “Position Validation in Crowdsourced Accessibility Mapping.” 
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system. Figure 22 shows a conceptual drawing of an end-user with some 
positioning uncertainty (based on his/her mobile GPS device positioning 
error, summarized in this chapter) traversing a path with obstacles, each 
of which has some final position uncertainty associated with the quality of 
the social moderation process (summarized in Chapter 3 of this report).  

This chapter suggests that the position uncertainty for mobile device users 
in this scenario is between 5.92 and 10.51 meters, depending on the device 
used and the presence of tall buildings and heavy canopy (Table 2). The 
analysis presented in Chapter 3 of this report, and in Rice (2015) suggests 
that the uncertainty in obstacle positioning in the GMU-GcT is between 
2.12 meters and 5.55 meters. The combination of the two uncertainty 
ranges (shown conceptually as dashed concentric buffers in Figure 22, is 
8.04 meters and 16.06 meters. This suggests that in circumstances where a 
GMU-GcT user has a mobile device with the best positioning (iPhone 6, 
5.92 meters) and obstacles have been optimally moderated for position 
(2.12 meters), the average uncertainty between positions is expected to be 
approximately 8.04 meters.  

Mobile devices with less accurate GPS capabilities and GMU-GcT obstacles 
with less accurate moderated positions may lead to distances of 16 meters 
or more. For GMU-GcT moderators interacting with unverified end-user 
reports with positional error (summarized in Rice et al. 2014 as having an 
average positional error of 18.36 meters), the uncertainty in position 
between the moderator (with a mobile device have between average 
positional uncertainty of 5.92 – 10.51 meters) and the obstacle interaction 
distance would be 24.28 – 28.87 meters. The interaction distance 
formulations discussed above are summarized in Table 5 (A) for 
interaction with moderated obstacles, and Table 5 (B) for mobile 
interaction with unmoderated reports. 
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FFiigguurree  2222..  CCoonncceeppttuuaall  ddiiaaggrraamm  ooff  tthhee  IInntteerraaccttiioonn  bbeettwweeeenn  eenndd--uusseerr  aanndd  oobbssttaacclleess  iinn  tthhee  
GGMMUU--GGccTT  

TTaabbllee  55..  IInntteerraaccttiioonn  ddiissttaanncceess  ffoorr  mmooddeerraatteedd  oobbssttaacclleess  aanndd  ffoorr  ffiieelldd  mmooddeerraattiioonn  
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Mobile Field Moderation in the GMU-GcT 

The moderation activities in the GMU-GcT, covered in detail in Rice et al. 
(2014)57, Rice et al. (2015)58,59, and Qin et al. (2015a), have in the past 
involved a hybrid desktop and mobile interaction paradigm, where 
information is collected via mobile device and entered into a desktop-
based moderation dashboard. Project researchers have decomposed the 
basic functionalities of this moderation dashboard (presented in Rice et al. 
2014)60 and deployed them to a mobile Web Application design for use on 
a mobile phone. The benefits of this moderation paradigm have been 
immediate and clear. The GMU-GcT mobile field moderation tools allow 
moderators to see and inspect obstacles, collect photographs, and 
document their properties while viewing the original obstacle reports. This 
in-situ moderation activity is not only more efficient and satisfying, as 
reported by project moderators, but is quicker, due to all moderation being 
done in the field rather than on separate computers over a period of hours. 
We provide a description of the tool and the mobile moderation workflow 
here.  

The GMU-GcT mobile moderation portal uses the same PostgreSQL 
database, PHP code, and JavaScript as our desktop moderation 
dashboard, but uses a JQuery Mobile framework to develop the mobile 
interface and functionality. Direct connections between our GMU-GcT 
native mobile application and the mobile moderation portal are provided 
through HTML links, so that a moderator can use the more responsive 
native mobile application while in exploratory mode or routing mode, but 
switch to the web application for mobile moderation. Figure 23 shows two 
preliminary obstacle selection screens (a single screen with finger scrolling 
functionality displayed here as two images). This screen is used by 
moderators to select and preview reports, and contains the key fields for 
obstacle reports, including User ID, Report ID, Location, Obstacle 
Description, Obstacle Type, and the contributed images. Experimentation 
with the mobile moderation tools and the reorganization of the 

                                                                    
57 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed.” 

58 Rice et al., “Position Validation in Crowdsourced Accessibility Mapping.” 
59 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
60 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed.” 
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moderation workflow underscored the importance of having the Obstacle 
Image and map-based location as key elements on the first screen as an 
essential part of the preview. In our former moderation paradigm, obstacle 
position was moderated several steps before an image of the obstacle was 
moderated, but for mobile moderation, the obstacle image needed to be 
part of the first screen. As we discuss in the final chapter of this report, 
obstacle images are the primary ‘commodity’ and future focus on the 
GMU-GcT. 

FFiigguurree  2233..  OObbssttaaccllee  sseelleeccttiioonn  aanndd  pprreevviieeww  ssccrreeeenn  ooff  tthhee  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

After an obstacle preview, the moderator taps the ‘next’ button at the 
bottom of the page. At this point, the moderation tools switch to a non-
linear structure with six different screen areas representing different 
aspects of moderation (Figure 24). The six moderation areas can be visited 
in sequence or out of order with a single tap.  
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FFiigguurree  2244..  MMaaiinn  MMooddeerraattiioonn  mmeennuu  ooff  tthhee  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

Figure 25 shows the location validation functionality, (accessed through 
tapping #1, Figure 24), which opens a screen with a map-based obstacle 
position that can be zoomed, and obstacle position updated with a click-
drag action. Positional accuracy for the report (calculated with a 
Haversine-based distance calculation between the reported location and 
the moderated location) is displayed and stored in our PostgreSQL 
database.  
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FFiigguurree  2255..  LLooccaattiioonn  vvaalliiddaattiioonn  iinn  tthhee  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

Figure 26 contains the moderation menus for checking and updating 
location description, obstacle description, obstacle type, and obstacle 
impact, which are accessed by tapping #2, Figure 24). The moderated 
values are stored in our PostgreSQL database.  
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FFiigguurree  2266..  OObbssttaaccllee  ddeessccrriippttiioonnss  uuppddaattee  iinn  tthhee  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

Image validation (Figure 27) is accomplished through the tools behind 
item #3 from Figure 24. The screen allows moderators to quickly view and 
replace images of an obstacle, and provide an assessment of image quality 
from our Moderator Rubric (discussed in Rice et al. 2014 and Rice 
2015)61,62. 

                                                                    
61 Ibid. 
62 Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping Applications: A George 

Mason University Case Study.” 
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FFiigguurree  2277..  IImmaaggee  vvaalliiddaattiioonn  iinn  tthhee  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

The remaining screens (accessed through tapping #4, 5, 6 from Figure 24) 
take the moderator through an assessment of obstacle attributes, including 
duration, urgency, and status code (Figure 28); moderator comments, 
report quality scoring, and obstacle lifetime extensions (if needed, Figure 
29); and general moderation overview (Figure 30). These items are 
followed by a confirm / submit process, where quality assessment 
statistics are displayed and final moderation submission is made (Figure 
31). 
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FFiigguurree  2288..  AAttttrriibbuutteess  aanndd  ssttaattuuss,,  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

 

FFiigguurree  2299..  MMooddeerraattoorr  ccoommmmeennttss,,  ssccoorriinngg,,  aanndd  oobbssttaaccllee  lloonnggeevviittyy  
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FFiigguurree  3300..  OObbssttaaccllee  mmooddeerraattiioonn  oovveerrvviieeww,,  GGMMUU--GGccTT  MMoobbiillee  MMooddeerraattiioonn  PPoorrttaall  

 

FFiigguurree  3311..  QQuuaalliittyy  aasssseessssmmeenntt  ssttaattiissttiiccss  aanndd  mmooddeerraattiioonn  oovveerrvviieeww  wwiitthh  ssuubbmmiitt  
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The following chapter presents an important overview and study of the 
social moderation process, which is at the heart of the quality assessment 
for the GMU-GcT, and represents one of the principle quality assessment 
techniques outlined by Goodchild and Li (2012) for geocrowdsourcing 
applications.63   

                                                                    
63 Michael F. Goodchild and Linna Li, “Assuring the Quality of Volunteered Geographic Information,” 

Spatial Statistics 1 (May 2012): 110–20, doi:10.1016/j.spasta.2012.03.002. 
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3   Social Moderation for Crowdsourced 
Geospatial Data 

Quality assessment and social moderation processes in 
geocrowdsourcing 

Though crowdsourced geospatial data (CGD) has proved to be useful in 
providing up-to-date information, the quality and the reliability of these 
datasets are two areas of concern. In the Phase 3 report (Rice et al. 
2014)64, several approaches to ensuring geocrowdsourced data quality 
were reviewed, along with the approach for data quality assessment used 
by the GMU Geocrowdsourcing Testbed (GMU-GcT). Large web service 
platforms such as Wikipedia and OpenStreetMap (OSM) rely on a large 
contributor base to find and correct errors (a crowdsourced approach), 
resulting in continuously improved database quality. However, the GMU-
GcT cannot solely rely on this approach, due to its smaller contributor 
group. Since the GMU-GcT produces a reasonably small dataset, with an 
average contribution rate of ten reports per week, we apply what 
Goodchild and Li (2012)65 refer to as the social approach to 
geocrowdsourced quality assessment. This approach relies on a group of 
team leaders to act as moderators in validating incoming data. 

The use of moderators to validate data is necessary when there is no 
authoritative data source to authenticate geocrowdsourced information, 
though it is uncertain how accurate this method is. The GMU-GcT utilizes 
a team of moderators who are thoroughly trained in project details, 
obstacle classification, and precise methods for moderating reports 
including field-checking. The aim is for consistency amongst one another 
in order to establish authority as the ground-truth. However, there is the 
concern regarding the extent to which the moderators are consistent with 
one another, as well as if they are a sufficient source for the ground-truth. 
This section will report on an analysis of the consistency and adequacy of 
multiple moderators in assessing the quality of GMU-GcT data in both 
positional location and obstacle characterization. For position, we base 

                                                                    
64 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed,” 201. 

65 Goodchild and Li, “Assuring the Quality of Volunteered Geographic Information.” 
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adequacy on consistency with previous findings in other geocrowdsourced 
data quality studies, such as Haklay (2010)66, Girres and Touya (2010)67, 
and Ramm et al. (2011) 68, who find that positional error is typically within 
5-6 meters in OSM studies (as summarized in Table 6). We also use 
Camponovo and Freundschuh’s (2014)69 research on prior knowledge of 
categorical accuracy of geocrowdsourced data. The data used in 
Camponovo and Freundschuh (2014) is from the Ushahidi Project, a 
humanitarian relief project that took place during the 2010 Haiti 
earthquake, where emergency responders were asked to categorize 
incoming messages into a series of primary and secondary categories. The 
accuracy rates for placement into primary categories were 50% and 
subcategories were only 27%. The tasks being performed by emergency 
responders were difficult and in some cases, unfamiliar, and the messages 
being categorized involved language translation, which presents further 
difficulty. Nevertheless, the Camponovo and study highlights the need for 
analysis of uncertainties associated with categorization by individuals 
involved in geocrowdsourcing. The GMU-GcT involves several 
opportunities for contributors to characterize attributes and select 
categories. Other than the preliminary study by Paez (2014) and this study 
by Rice (2015), we have not pursued the quality issues associated with 
errors in categorization to the same depth as presented in the Camponovo 
study.  

  

                                                                    
66 Mordechai Haklay, “How Good Is Volunteered Geographical Information? A Comparative Study of 

OpenStreetMap and Ordnance Survey Datasets,” Environment and Planning. B, Planning & Design 37, 
no. 4 (2010): 682. 

67 Jean-François Girres and Guillaume Touya, “Quality Assessment of the French OpenStreetMap 
Dataset,” Transactions in GIS 14, no. 4 (August 2010): 435–59, doi:10.1111/j.1467-
9671.2010.01203.x. 

68 Frederik Ramm, Jochen Topf, and Steve Chilton, OpenStreetMap: Using and Enhancing the Free Map 
of the World (UIT Cambridge Cambridge, 2011), http://library.wur.nl/WebQuery/clc/1958758. 

69 Michael E. Camponovo and Scott M. Freundschuh, “Assessing Uncertainty in VGI for Emergency 
Response,” Cartography and Geographic Information Science 41, no. 5 (October 20, 2014): 440–55, 
doi:10.1080/15230406.2014.950332. 



40

TTaabbllee  66..  SSuummmmaarryy  ooff  ppoossiittiioonnaall  aaccccuurraaccyy  ffiinnddiinnggss  ffoorr  vvaarriioouuss  OOppeennSSttrreeeettMMaapp  ddaattaasseettss..  

Moderator Consistency Study 

In evaluating moderator consistency, a study was conducted as a part of 
Rebecca Rice’s Master’s Thesis (2015). Ms. Rice designed a study in which 
datasets of three project members who acted as GMU-GcT moderators 
were tested for consistency. First, the three moderators were trained in the 
use of moderator tools by Rebecca, the study designer. Each moderator 
received a rubric, carefully created by the project leader, providing 
detailed instructions on how to adequately position reports to reflect the 
actual obstacle location as well as how to correctly classify obstacles. Then 
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the study designer reports a series of obstacles to separate customized 
versions of the GMU-GcT website, enabling simultaneous blind 
moderation by all three moderators. As soon as new reports were added to 
the separate databases and appeared on each moderator’s web map, each 
moderator was asked to field-check, confirm, and quality assess the report. 
Due to the transient nature of the obstacles being reported, moderators 
were asked to field-check and moderate reports on the same day the 
reports are were contributed. Once each of the moderators completed their 
set of reports for the day, we created a “ground-truth” version of each 
reported obstacle by making a joint decision with the two study designers 
and project leader through careful moderation of the report, based on the 
rubric created by the project leader. This ground-truth version acted as the 
basis for comparison in evaluating moderator accuracy. The workflow of 
the study is outlined in Figure 32. 
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FFiigguurree  3322..  FFrraammeewwoorrkk  oouuttlliinniinngg  tthhee  pprroocceessss  ffoorr  eevvaalluuaattiinngg  mmooddeerraattoorr  ccoonnssiisstteennccyy  

 

Data Collection 

Over the course of three weeks in April 2015, a set of 33 reports with 
varying quality were contributed to the test GMU-GcT database being used 
for the study by Rebecca, project leader and study designer. Between four 
and seven obstacles were reported per day, twice a week, and then copied 
to the three moderator PostgreSQL databases. The moderators were then 
notified that there were reports to field-check, moderate, and validate. 
Figure 33 highlights the study area as well as the location of the reported 
obstacles. 

Reports of varying quality are submitted to GMU-GcT

Moderators are notified of reports

Mod 1 Mod 2 Mod 3

Field check Field check Field check

Moderators individually evaluate and correct reports

System admin 

ground-truths report

ground truth Mod 1 Mod 2 Mod 3original report

F I V E  S E T S  O F  D A T A  P R O D U C E D
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FFiigguurree  3333..  OObbssttaacclleess  rreeppoorrtt  ttoo  tthhee  GGMMUU--GGccTT  ffoorr  tthhee  mmooddeerraattoorr  ccoonnssiisstteennccyy  ssttuuddyy  ((3333  ttoottaall))  
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Evaluating Positional Accuracy 

Because the GMU-GcT uses its data for obstacle-avoidance in routing, 
positional accuracy is critical, as demonstrated by Figure 34. Once 
moderated, obstacles are expected to intersect with the GMU-GcT’s 
pedestrian network. To evaluate positional accuracy, the position of each 
moderated report was compared to the ground-truth report for each 
obstacle. The “near” tool in ArcMap was used to calculate the distance 
from one feature to its nearest feature based on the projected coordinate 
system of the data, resulting in the distance of each moderated report from 
the actual obstacle. These distances are analyzed to determine the overall 
positional error and gain insight into moderator accuracy in positioning 
reports. 

 

 

FFiigguurree  3344..  OObbssttaaccllee  aavvooiiddaannccee  iinn  rroouuttiinngg  ffoorr  tthhee  GGMMUU--GGccTT..  OObbssttaacclleess  aarree  bbuuffffeerreedd  ttoo  ffaacciilliittaattee  
iinntteerraaccttiioonn  tthhrroouugghh  rroouuttiinngg  aanndd  mmoobbiillee  eexxpplloorraattiioonn..  AAnn  uunnccoonnffiirrmmeedd  rreeppoorrtt  mmaayy  nnoott  iinntteerrsseecctt  

wwiitthh  tthhee  ppeeddeessttrriiaann  nneettwwoorrkk..  
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Evaluating categorical consistency for obstacle type 

Because the GMU-GcT is meant to be useful for end-users with varying 
accessibility needs, it is important that obstacles are correctly categorized. 
The classification system for obstacle type is outlined extensively in the 
rubric given to the moderators. The GMU-GcT uses six main categories to 
classify obstacles: sidewalk obstruction, construction detour, poor surface 
condition, entrance/exit problem, crowd/event, and other. Moderators can 
select one or multiple obstacle types during the validation process. The 
reports evaluated by the moderators in this study contained varying data 
quality, meaning that some reports did not need obstacle type changes, 
while other reports needed considerable attention. After the data 
collection, all moderator databases were analyzed, and each obstacle 
report was given a score based on consistency with ground truth. Reports 
received a “2” for a complete match, a “1” for a partial match, and a “0” for 
no match. Averaging all of the reports scores for each moderator provided 
a final score on overall categorical consistency for the obstacle type 
category. 

Results 

Thirty-three obstacles were reported during the course of this study, 
resulting in a total of 132 data entries for quality analysis. The study area, 
campus sections 1-4, containing the ground-truth location of the obstacles 
along with the position chosen by each of the moderators, is shown in 
Figure 35, Figure 36, Figure 37, and Figure 38, while Table 7 summarizes 
the positional measures for the 33 collected reports. The average 
positional error amongst the three moderators is 5.55 meters, with a 
standard deviation of 2.86 meters. Out of the 33 obstacle reports, 54.5% of 
reports were positioned within three meters of the obstacle’s actual 
location, which is well within the expected distance as laid out by previous 
research. 69.7% of the reports were positioned within 6 meters of the 
obstacle’s actual location, which is in congruence with similar findings 
regarding positional accuracy of VGI. Figure 39 is a representation of two 
reports that were positioned very well by the moderators, which is ideal in 
the realm of geocrowdsourced data quality. An analysis of variance 
(ANOVA) for comparing the mean positional accuracy figures for the three 
moderators (Table 8) indicates that there were no significant differences 
between them (F-statistic 1.5735, p-value 0.2162). An analysis of the type 
of obstacle (point, areal) indicates that the mean positional accuracy for 
point features (2.12 meters) is significantly different from the mean 
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positional accuracy for areal features (12.54 meters). This comparison is 
based on a Student’s T-statistic with heteroskedastic variance and an 
unequal sample size, results in a t- value of 4.817, a p-value of 0.00002, 
with 38 degrees of freedom (Table 9). 

 

 

FFiigguurree  3355..  OObbssttaaccllee  rreeppoorrtteedd  ttoo  tthhee  GGMMUU--GGccTT  ffoorr  tthhee  mmooddeerraattoorr  ccoonnssiisstteennccyy  ssttuuddyy,,  iinncclluuddiinngg  
tthhee  oobbssttaaccllee''ss  aaccttuuaall  rreeppoorrtt  llooccaattiioonn  aanndd  tthhee  llooccaattiioonnss  cchhoosseenn  bbyy  mmooddeerraattoorrss..  SSoouutthh  GGMMUU  

CCaammppuuss  
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FFiigguurree  3366..  OObbssttaaccllee  rreeppoorrtteedd  ttoo  tthhee  GGMMUU--GGccTT  GGccTT  ffoorr  tthhee  mmooddeerraattoorr  ccoonnssiisstteennccyy  ssttuuddyy,,  
iinncclluuddiinngg  tthhee  oobbssttaaccllee’’ss  aaccttuuaall  llooccaattiioonn  aanndd  tthhee  llooccaattiioonnss  cchhoosseenn  bbyy  mmooddeerraattoorrss..  NNoorrtthh  GGMMUU  

CCaammppuuss  
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FFiigguurree  3377..  OObbssttaaccllee  rreeppoorrtteedd  ttoo  tthhee  GGMMUU--GGccTT  ffoorr  tthhee  mmooddeerraattoorr  ccoonnssiisstteennccyy  ssttuuddyy,,  iinncclluuddiinngg  
tthhee  oobbssttaaccllee’’ss  aaccttuuaall  llooccaattiioonn  aanndd  tthhee  llooccaattiioonnss  cchhoosseenn  bbyy  mmooddeerraattoorrss..  OOlldd  TToowwnn  FFaaiirrffaaxx  
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FFiigguurree  3388..  OObbssttaaccllee  rreeppoorrtteedd  ttoo  tthhee  GGMMUU--GGccTT  ffoorr  tthhee  mmooddeerraattoorr  ccoonnssiisstteennccyy  ssttuuddyy,,  iinncclluuddiinngg  
tthhee  oobbssttaaccllee’’ss  aaccttuuaall  llooccaattiioonn  aanndd  tthhee  llooccaattiioonnss  cchhoosseenn  bbyy  mmooddeerraattoorrss..  NNoorrtthh  FFaaiirrffaaxx..  
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TTaabbllee  77..  PPoossiittiioonnaall  eerrrroorr  ffoorr  eeaacchh  rreeppoorrtt,,  bbaasseedd  oonn  tthhee  llooccaattiioonn  ddeetteerrmmiinneedd  bbyy  eeaacchh  
mmooddeerraattoorr..  PPoossiittiioonnaall  eerrrroorr  iiss  ccaallccuullaatteedd  aass  tthhee  ddiiffffeerreennccee  bbeettwweeeenn  tthhee  mmooddeerraattoorr  ppoossiittiioonn  

aanndd  tthhee  ccoonnffiirrmmeedd  ggrroouunndd  ttrruutthh  ppoossiittiioonn..    
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TTaabbllee  88..  AAnnaallyyssiiss  ooff  VVaarriiaannccee  ffoorr  MMooddeerraattoorr  PPoossiittiioonnaall  AAccccuurraaccyy    

TTaabbllee  99..  TT--TTeesstt  ffoorr  OObbssttaaccllee  TTyyppee  ((ppooiinntt,,  aarreeaall))  

FFiigguurree  3399..  AA  rreepprreesseennttaattiioonn  ooff  tthhee  ppoossiittiioonnaall  eerrrroorrss  aassssoocciiaatteedd  wwiitthh  ttwwoo  oobbssttaaccllee  rreeppoorrttss..  TThhee  
bbllaacckk  cciirrcclleess  rreepprreesseenntt  tthhee  oobbssttaaccllee  llooccaattiioonn  cchhoosseenn  bbyy  tthhee  mmooddeerraattoorrss,,  wwhhiillee  tthhee  aasstteerriisskk  

rreepprreesseennttss  tthhee  oobbssttaaccllee’’ss  aaccttuuaall  llooccaattiioonn,,  aass  ddeetteerrmmiinneedd  bbyy  tthhee  pprroojjeecctt  mmaannaaggeerrss..  
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Six of the ninety-three moderator obstacle reports had positional errors of 
greater than 20 meters. This can mainly be attributed to some obstacles 
not being adequately represented by a point location, which is the type of 
feature used to represent obstacles in our system, rather than a line or 
polygon representation. This presents an issue for obstacles that are very 
large, as demonstrated by Figure 40. In many cases, the obstacles reported 
to the GMU-GcT consisted of a large construction area or a large segment 
of sidewalk that was closed, which would be best represented by a polygon 
feature. The moderators for this study were instructed to assign the 
position of the obstacle report directly in the center of the obstacle, but the 
resulting variances in spatial perception associated with georeferencing 
became a factor in selecting the accurate position of the obstacle. 
Report_0007 (Figure 41) is an example of such scenario, which explains 
the positional error of 22.55 meters. Because of this discrepancy Table 7 
has a column indicating whether an obstacle was an areal feature, and the 
overall positional error was recalculated with areal features removed, with 
an average positional error of non-areal features being 2.12 m.  

 

 

FFiigguurree  4400..  AA  rreepprreesseennttaattiioonn  ooff  tthhee  lliimmiittaattiioonnss  pprreesseenntteedd  bbyy  aassssiiggnniinngg  ppoossiittiioonn  aass  aa  ppooiinntt  
llooccaattiioonn  rraatthheerr  tthhaann  aassssiiggnniinngg  ppoossiittiioonn  ttoo  eennccoommppaassss  aa  llaarrggeerr  aarreeaa,,  aass  aa  lliinnee  oorr  ppoollyyggoonn..  
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FFiigguurree  4411..  DDeemmoonnssttrraattiioonn  ooff  aa  ddiiffffiiccuulltt  rreeppoorrtt  ttoo  ppoossiittiioonn  wwiitthh  aa  ppooiinntt  dduuee  ttoo  iittss  aarreeaall  nnaattuurree,,  
rreessuullttiinngg  iinn  aa  hhiigghh  ppoossiittiioonnaall  eerrrroorr..    

 

The difference in average positional errors between the point and areal 
features underscores the inadequacy in simple point-based representation. 
This problem has been partially rectified with polygon-based obstacle 
footprints, but this feature is not commonly used by the public. Polygon-
based obstacle footprints are enabled for regular moderation in the GMU-
GcT, however, they were not implemented in this study due to its potential 
for creating complications with the moderating process. The regular GMU-
GcT moderation process will continue to use polygon geometries to 
represent obstacles that are larger and inadequately represented by a 
point. 

Another issue that caused a larger positioning error amongst moderators 
is the limitation of georeferencing based off of Google Maps orthoimagery, 
as opposed to collecting GPS coordinates of hazards when field checking. 
The orthoimagery provided by Google is not leaf-off, which causes issues 
for positioning in some cases, such as report_000365 (Figure 42). 
Report_000365 consisted of a wooden walkway that routed the user 
around a pathway that required a detour due to construction, and is not 
reflected in the most recent orthoimagery or in Google Maps, making the 
obstacle even more difficult to locate on a map. 

Average Positional Error: 22.55 m
Standard Deviation: 16.20 m

report_0007

4.45

27.48
35.71
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FFiigguurree  4422..  AAnn  eexxaammppllee  ooff  aa  ppoooorrllyy  ppoossiittiioonneedd  rreeppoorrtt,,  dduuee  ttoo  tthhee  lliimmiittaattiioonnss  pprreesseenntt  bbyy  uussiinngg  
GGooooggllee  oorrtthhooiimmaaggeerryy  ttoo  ggeeoorreeffeerreennccee  aann  oobbssttaaccllee’’ss  ppoossiittiioonn  rraatthheerr  tthhaann  vvaalliiddaattiinngg  ppoossiittiioonn  bbyy  
GGPPSS  oorr  tthhrroouugghh  ssoommee  ootthheerr  mmeetthhoodd..  

In evaluating categorical consistency for obstacle type, moderators 
remained mostly consistent. After calculating a matching score for the 
category designations in each report, where 0=no match, 1=partial match, 
and 2=exact match, a total matching score was calculated for each 
moderator for all reports. The total matching score for moderators was 
1.79 for moderator 1, 1.76 for moderator 2, and 1.70 for moderator 3 
(Figure 43). The overall average matching score for all moderators and all 
reports was 1.75. This shows that the three moderators were mostly in 
agreement, and have an overall 76.8% exact match rate, and an overall 
98.0% match rate of at least one of the appropriate categories. The match 
rate for each moderator compared to the ground truth is graphed in Figure 
43.  

13.55

15.79

32.17

Average Positional Error: 20.50 m
Standard Deviation: 10.16 m

report_000365
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FFiigguurree  4433..  OOvveerraallll  aaggrreeeemmeenntt  bbeettwweeeenn  tthhee  tthhrreeee  mmooddeerraattoorrss  aanndd  tthhee  ggrroouunndd  ttrruutthh  ffoorr  
ccllaassssiiffyyiinngg  oobbssttaacclleess,,  wwiitthh  eeaacchh  mmooddeerraattoorr  rreepprreesseenntteedd  bbyy  oonnee  hhiissttooggrraamm..    

While an exact match rate of 76.8% is very good, and is better than 
categorical accuracy found in research such as Camponovo and 
Freundschuh (2014), there is still some explanation necessary for some 
matching errors and disagreement in obstacle classification. Though the 
moderators are trained and given a rubric that declares the criteria for 
each obstacle type, there is still some ambiguity. For example, poor surface 
conditions and sidewalk obstructions can easily be confused if a poor 
surface condition begins to fully or partially obstruct a path, in which it 
would be a sidewalk obstruction as well. Construction detours are also 
sometimes difficult to classify, because there are often reports for 
construction-related hazards, but they do not actually culminate in a 
detour. This was apparent for one obstacle, in which two of the moderators 
resulted in “no match” for correctly classifying obstacle type. The original 
report contained “construction detour, sidewalk obstruction,” though the 
obstacle would have been correctly classified as a poor surface condition. 
One moderator classified the obstacle correctly, while another moderator 
classified the obstacle as a construction detour, and another as a sidewalk 
obstruction. Figure 44 exemplifies some of the discrepancies for each 
obstacle type, with the most discrepancies being associated with sidewalk 
obstructions and poor surface conditions. 

Category Match Rate Detail for Moderators

Moderator 1
1.79 / 2.00

Moderator 2
1.76 / 2.00

Moderator 3
1.70 / 2.00
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FFiigguurree  4444..  TToottaall  ccoouunntt  ooff  oobbssttaaccllee  ttyyppee  sseelleeccttiioonnss  ppeerr  eeaacchh  mmooddeerraattoorr,,  ccoommppaarreedd  ttoo  oorriiggiinnaall  
rreeppoorrttss  aanndd  tthhee  ggrroouunndd  ttrruutthh..  

This data quality analysis is a progressive start to assessing consistency 
amongst moderators and evaluating the social moderator process. We 
have gained much insight from this study about the role that moderators 
play in positioning reports, and the expected positional accuracy, which is 
better than the typical positional accuracies for mobile GPS reported by 
authors such as Zandbergen (2009), reviewed in Chapter 2 of this report.  

The GMU-GcT benefits from its small area of interest and relatively small 
amount of incoming data in that the social approach is most appropriate 
for ensuring data quality. In order to assure that incoming reports are 
checked in a timely manner, the GMU-GcT employs a team of moderators 
to quality check reports. The conclusions that can be drawn from this 
study are that moderator positioning falls within the expected positional 
error of most crowdsourced data (as outlined by previous OSM study 
findings in Table 7), meaning that the GMU-GcT contains data that falls 
within the quality standard provided by other VGI quality assessment 
studies. While we can assert that the data contained in the GMU-GcT is 
quality assured, it is difficult to assert that our data is “good quality” 
without a set standard for VGI data quality, similar to the National 
Standard for Spatial Data Accuracy.  
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While moderators are thoroughly trained in how to field-check and 
validate obstacles, there is no proven method for making them 100% 
consistent with one another. While the reports are mainly consistent, in 
that their positioning is within 3 meters for all obstacles (and less than 1 
meter for non-area features), and in agreement for almost all obstacle 
types, there is still some inherent ambivalence in selecting a location as 
well as for determining obstacle type. However, as the research from 
Camponovo and Freundschuh (2014) shows, ambivalence may be an 
intrinsic part of the geocrowdsourcing process. In order to improve the 
consistency and accuracy of moderator’s decisions, it is critical that we 
ensure they are trained and are allowed to make joint decisions when 
validating incoming data. If this experiment allowed the three moderators 
to discuss with one another the reasoning behind their report positioning 
and categorical selections, they would likely be more consistent and more 
congruent with the ground truth. While the only categorical assessment 
analyzed in depth for this study was obstacle type, the many other areas of 
categorical assessment will be analyzed in future to gauge moderator 
consistency. A preliminary look at categorical designations in the GMU-
GcT is reviewed in Paez (2014)70 and Qin et al. (2015b)71.  

Multiposition Validation and Moderation in the GMU-GcT 

One recent avenue of research by this team is the combination of multiple 
elements of positioning to provide additional guidance and help to the 
GMU-GcT moderators. As noted in this chapter, each report submitted by 
a contributor includes an asserted position, as well as a moderated 
position. The moderated report also includes a moderated position, which 
was the subject of the study in this chapter. Other report elements such as 
the images and description text can produce other positioning information 
that can be combined into a multiposition validation workflow, which is 
still under development. Figure 45 shows the concept of multiple aspects 
of position validation in the GMU-GcT. including user-contributed 
position from smartphone GPS and hand-selected georeferencing, as well 
as final validated positioning built with moderator positioning, image 
geotags, and geoparsed location description. This section will look at the 
development of experimental methods to use image geotags associated 
with position and orientation, as well as geoparsed location description 
text for multiposition validation in the GMU-GcT.  
                                                                    
70 Paez, “Recruitment, Training, and Social Dynamics in Geo-Crowdsourcing for Accessibility.” 
71 Qin et al., “Obstacle Characterization in a Geocrowdsourced Accessibility System.” 
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FFiigguurree  4455..  MMuullttiippllee  aassppeeccttss  ooff  ppoossiittiioonniinngg  iinn  tthhee  GGMMUU--GGccTT,,  aanndd  tthhee  ppoossiittiioonn  ccoonnffiirrmmaattiioonn  
pprroocceessss  

Image Geotags for Position and Orientation 

Figure 46 shows typical GMU-GcT report with an attached photograph, 
submitted with the report. Report contributors can submit up to two 
photographs, while additional reports of the same obstacle can contribute 
additional images. Figure 47 shows a conceptual view of information that 
can be extracted from a collection of reports with multiple photographs of 
the same obstacle. The figure shows positional information and 
orientation vectors extracted from the image headers of three 
photographs, whose origin positions and intersection points would 
converge on the reported obstacle, whose position is being independently 
confirmed by the moderator.  
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FFiigguurree  4466..  GGMMUU--GGccTT  OObbssttaaccllee  RReeppoorrtt  

 

 

FFiigguurree  4477..  OObbssttaaccllee  pphhoottooss  wwiitthh  ggeeoottaaggss  aanndd  oorriieennttaattiioonn  vveeccttoorrss  

In order to explore the possibilities represented by positional geotags and 
orientation geotags in the multiposition validation workflow, the authors 

0 105

Meters

Obstacle

photo 2

photo 1

photo 3
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used three different camera systems to repeatedly photograph the GMU-
GcT obstacle shown in Figure 46. The three different camera systems 
include an iPhone 6 plus, a Nikon Coolpix S9500 (an inexpensive 
consumer-level point and shoot camera), and a Canon EOS 6D (a 
professional-level Digital SLR camera with a GP-E2 GPS attachment, 
which captures location and orientation). All three devices are capable of 
capturing position and orientation, and writing that data into image 
headers, which are processed with python scripts and imported into a 
geographic information system. The location and orientation information 
for all three camera systems are shown along with direction vectors in 
Figure 48, Figure 49, Figure 50.  

FFiigguurree  4488..  iiPPhhoonnee  66++  iimmaaggee  ggeeoottaagg  ppoossiittiioonnss  aanndd  oorriieennttaattiioonn  vveeccttoorrss  
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FFiigguurree  4499..  NNiikkoonn  CCoooollPPiixx  SS99550000  iimmaaggee  ggeeoottaagg  ppoossiittiioonnss  aanndd  oorriieennttaattiioonn  vveeccttoorrss  
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FFiigguurree  5500..  CCaannoonn  EEOOSS--66DD  ++  GGPP--EE22  ggeeoottaagg  ppoossiittiioonnss  aanndd  oorriieennttaattiioonn  vveeccttoorrss  

As is evident from the Figures, results are mixed. The Canon EOS6D + GP-
E2 and Nikon Coolpix S9500 produce good results and show how geotag 
positions and orientation vectors could be used to assist a moderator 
confirm the position of a report. In cases where the contributed report is 
mis-positioned due to contributor error, as has been seen in the GMU-GcT 
and discussed in Pease (2014) and Rice et al. (2014), this additional 
element of validation would be useful in performing a correction to report 
position. The image geotag positions from the iPhone 6+ are in 
approximately the right places, consistent with what we have discussed 
about mobile device GPS constraints in chapter 2, but the orientation 
vectors are incorrect, and in fact, show a systematic error in the wrong 
direction. This error appears to be a device and operating system-specific 
error in the processing of electronic compass information and embedded 
EXIF tags.72 If future technology has the same trend toward improvement 

                           
72 https://discussions.apple.com/thread/6649249?start=0  
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as it has in the past, we can expect to see the same quality from the Canon 
EOS 6D + GP-E2 being integrated into the iPhone and other less expensive 
consumer level devices. The Nikon Coolpix S95000, a moderately priced 
consumer level device manufactured in 2013, has excellent quality and 
good results, with respect to image geotag positions and orientation. 
Future incarnations of GMU-GcT may be able to use image geotags and 
orientation vectors, as shown here, to provide a quick automatic validation 
to position.  

Geoparsed Location Description Text in the GMU-GcT 

Rice et al. (2012a) and Rice (2015) contain details about a methods being 
integrated into the GMU-GcT, which involves the automatic generation of 
a geospatial footprint from the placenames, directions, distances, and 
location descriptions in an obstacle report. Project collaborator Ahmad 
Aburizaiza has continued work with gazetteer-based geoparsing presented 
in Rice et al. (2011) and Rice et al. (2012a), and has substantially increased 
its functionality. Using open source web-mapping tools MapBox, TURF.js, 
JQuery, and Bootstrap, Aburizaiza has demonstrated the ability to quickly 
derive a footprint from geoparsed text, and represent it on a map as a 
convex or concave hull, as shown in Figure 51, where references to two 
GMU campus buildings are matched using a gazetteer, and whose 
geometry is then used to automatically construct footprints.  
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FFiigguurree  5511..  CCoonnvveexx  ((uuppppeerr  lleefftt))  aanndd  ccoonnccaavvee  ((uuppppeerr  rriigghhtt))  hhuullll  ggeeoommeettrriieess  aassssoocciiaatteedd  wwiitthh  ttwwoo  
ccaammppuuss  bbuuiillddiinnggss..  HHuullll  ggeeoommeettrryy  iiss  rreeffiinneedd  ((bboottttoomm))  ttoo  iinncclluuddee  oonnllyy  aarreeaass  bbeettwweeeenn  tthhee  nnaammeedd  

ffeeaattuurreess..  

Aburizaiza has developed automatic geoparsing code to construct 
footprints for many generic instances of obstacle description text, 
including named street intersections (Figure 52), walkways between 
named buildings (Figure 53), areas between named streets and nearby 
buildings  (Figure 54), directional indicators associated with buildings 
(Figure 55), and street segments in between two other street segments 
(Figure 56).  
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FFiigguurree  5522..  FFoooottpprriinntt  ffoorr  tthhee  iinntteerrsseeccttiioonn  ooff  ttwwoo  ssttrreeeettss  

FFiigguurree  5533..  WWaallkkwwaayyss  bbeettwweeeenn  nnaammeedd  bbuuiillddiinnggss  

FFiigguurree  5544..  FFoooottpprriinntt  ffoorr  tthhee  aarreeaa  bbeettwweeeenn  aa  nnaammeedd  ssttrreeeett  aanndd  aa  nnaammeedd,,  nneeaarrbbyy  bbuuiillddiinngg  
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FFiigguurree  5555..  FFoooottpprriinntt  ffoorr  tthhee  aarreeaa  aassssoocciiaatteedd  wwiitthh  aa  ddiirreeccttiioonnaall  wwoorrdd  aanndd  aa  nnaammeedd  bbuuiillddiinngg  
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FFiigguurree  5566..  FFoooottpprriinntt  ffoorr  tthhee  aarreeaa  aassssoocciiaatteedd  wwiitthh  aa  ssttrreeeett  sseeggmmeenntt  bbeettwweeeenn  ttwwoo  ootthheerr  ssttrreeeettss  

The processing for the examples shown can be done automatically for any 
location descriptions with named features from our gazetteer meeting any 
of the general patterns shown. Augmenting the capability of the GMU-GcT 
to include more elaborate and complex geospatial relationships and 
importantly, to resolve ambiguities when they arise, is a goal of future 
work. With the capabilities presented here to process image geotags and 
extract location and orientation, and to automatically create footprints 
from geoparsed location descriptions, future moderators in the GMU-GcT 
will have many sources of positioning information to identify, confirm, 
and validate reports. The final goal of this work is a dashboard, under 
development, containing information such as Figure 57, which combines 
the various existing forms of position information together into a single 
window that can be used by moderators in their validation and quality 
assessment workflow. 
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FFiigguurree  5577..  GGMMUU--GGccTT  mmooddeerraattoorr  mmuullttiippoossiittiioonn  vvaalliiddaattiioonn  ddaasshhbbooaarrdd  ((uunnddeerr  ddeevveellooppmmeenntt))  
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The next chapter looks at obstacle engagement with mobile devices, which 
represents an important augmentation of the GMU-GcT and reflects some 
of the important dynamic elements of geocrowdsourcing discussed in 
Chapter 2.  
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4   Dynamic Obstacle Engagement with 
Mobile Devices 

 

One of the most important emerging aspects of geocrowdsourcing is the 
focus on mobile devices as both the platform for participation by end-
users, and as a platform for authoritative entities to manage, quality check, 
and facilitating geocrowdsourcing activity. Chapter 2 looked at the 
dynamic elements of geocrowdsourcing, where with Dr. Dieter Pfoser 
described the commoditization of GPS technology and its integration in 
mobile phones as a major element in dynamic geocrowdsourcing. This 
dynamic, device-based focus has resulted in vast amounts of tracking data 
that can be used in applications such as traffic prediction and road 
condition reporting. Chapter 3 looked at the ability of moderators to field 
check reports and establish position, through a hybrid mobile and desktop 
paradigm. This chapter focuses on how mobile devices can be used for 
geocrowdsourcing engagement and GMU-GcT functionality.  

Authors such as Muehlenhaus (2013)73 see mobile devices as a new center 
of information exchange. He articulates the important cartographic design 
principles for mapping on mobile devices, including dynamic display 
elements and interfaces that are “chubby-finger friendly” (ibid, 23). 
Dillemuth (2005)74, seeing the future importance of widespread mobile 
map use, designed studies of pedestrian route-following with mobile 
devices, offering cartographic advice and cognitive-design guidelines for 
small devices that would be used in dynamic, field-based settings. Hupfer 
and colleagues (2012)75 developed software for mobile devices to facilitate 
simple, rapid construction and deployment of geocrowdsourcing 
applications. Thatcher (2013)76 suggests that the focus on mobile devices 
                                                                    
73 Ian Muehlenhaus, Web Cartography: Map Design for Interactive and Mobile Devices (CRC Press, 

2013). 
74 Julie Dillemuth, “Map Design Evaluation for Mobile Display,” Cartography and Geographic Information 

Science 32, no. 4 (2005): 285–301. 
75 Susanne Hupfer et al., “MoCoMapps: Mobile Collaborative Map-Based Applications,” in Proceedings 

of the ACM 2012 Conference on Computer Supported Cooperative Work Companion (ACM, 2012), 43–
44. 

76 Jim Thatcher, “From Volunteered Geographic Information to Volunteered Geographic Services,” in 
Crowdsourcing Geographic Knowledge, ed. Daniel Sui, Sarah Elwood, and Michael F. Goodchild 
(Dordrecht: Springer Netherlands, 2013), 161–73, http://www.springerlink.com/index/10.1007/978-
94-007-4587-2_10. 



 71 

is a way to extend the static world of volunteered geographic information 
into a realm of volunteered geographic services, where mobile devices 
place the user in the field and links him or her in time and space with 
other users. The mobile device becomes the link between embedded end-
users, who share volunteered geographic information and volunteered 
geographic services. 

Haklay, in his highly cited 2010 paper asked, “How good is volunteered 
geographic information”?  Given the current 2015 context of what we 
know about VGI and CGD data quality (explored in detail in Girres and 
Touya 201077, Ruitton-Allineau 201178, Rice et al. 2013b79, Rice et al. 
201580, and Rice 201581), we extend the question to ask, “How capable are 
mobile devices in facilitating dynamic geocrowdsourcing?”  This focus on 
the mobile platform is an important theme in dynamic geocrowdsourcing 
and explores the interaction between a mobile device user and obstacle 
from the GMU-GcT.  

Dynamic Obstacle Engagement in the GMU Geocrowdsourcing 
Testbed 

Having reviewed the uncertainty in obstacle positioning (Chapter 3) and 
the positioning capabilities of GPS devices (this chapter) and the 
associated estimates for interaction distances with obstacles (Table 5) the 
final consideration in dynamic obstacle engagement is the influence that 
movement of the end-user or moderator will have in obstacle engagement. 
The end-users of the GMU-GcT will be various, but likely students, faculty, 
and staff that are mobility or visually-impaired, or alternatively, their care 
givers who are accompanying them through an unfamiliar environment. 
These end-users need to be alerted to the presence of an obstacle ahead of 
their current path, so that they can avoid it. They may choose, depending 
on the nature of the obstacle, to return and reroute themselves along a 
different pathway. Mobile routing tools, which will be discussed at the next 
                                                                    
77 Girres and Touya, “Quality Assessment of the French OpenStreetMap Dataset.” 
78 Anne-Marthe Ruitton-Allinieu, “Crowdsourcing of Geoinformation: Data Quality and Possible 

Applications” (Master of Science, Aalto University, 2011), 
http://maa.aalto.fi/fi/geoinformatiikan_tutkimusryhma-
gma/geoinformatiikka_ja_kartografia/2011_ruitton-allinieu_a.pdf. 

79 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 
Design, Creation and Assessment of a Testbed Environment for Accessibility.” 

80 Rice et al., “Position Validation in Crowdsourced Accessibility Mapping.” 
81 Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping Applications: A George 

Mason University Case Study.” 



72

chapter, allow for obstacle-avoidance routing. Because the end-users of 
our system are moving through space, the distance required to alert them 
of an obstacle ahead of them increases as their own speed increases. This 
dynamic suggests that we need to increase the obstacle engagement 
distances required for dynamic engagement (Table 5). While conducting 
field tests in July, and August, we experimented with various interaction 
distances based on known GPS characteristics and based on the 
information in Table 5   During testing in early August, we established 100 
feet (30.48 meters) as an acceptable reflection of the uncertainties 
reflected in Table 5, as well as the impact that a moving end-user would 
have on the necessary obstacle alert distance.  

A preliminary study by Eric Ong (Figure 58) for the pedestrian network on 
the George Mason University campus (our area of most significant 
activity) indicated an average segment length of 87.59 meters, with a 
majority of segments under 20 meters. An interaction distance of 100 feet 
(30.48 meters) would in some cases, result in an end-user needing to 
backtrack, but during testing the distance seemed to be a good 
compromise for all known factors and practical usability issues.  

 

FFiigguurree  5588  SSeeggmmeenntt  lleennggtthhss  iinn  mmeetteerrss  ffoorr  tthhee  GGeeoorrggee  MMaassoonn  UUnniivveerrssiittyy  ccaammppuuss  

The only unknown factor, after accepting general interaction distances 
based on multiple sources of uncertainty, was the latency and 
responsiveness of the computer data networks, server, and mobile 
software. These issues will be discussed in the context of our field work. 
The next section of this chapter discusses two applications for mobile 
obstacle engagement developed as a part of this work, and a set of field 
tests to measure, visualize, and analyze patterns in mobile obstacle 
engagement.  
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Mobile applications for obstacle engagement 

The GMU-GcT end users can access our GMU-GcT obstacle information 
online through our web portal82, but also through a new native mobile 
application developed by project researcher Samuel Ober (Figure 59). This 
native mobile application was developed from earlier incarnations coded 
with Sencha Touch, but has been updated using Swift, an open-source 
coding tool for iOS. Swift has a concise syntax that generates faster code 
for mobile devices with low-power processers. The current version is of the 
GMU-GcT Mobile App has been tested by moderators and will be released 
through Apple’s App Store pending final approval. This native mobile 
application can take advantage of the wide range of functions in iOS, and 
has a benefit of running continuously, whether or not it is open and 
maximized on screen. An alternative mobile web application, developed by 
project researcher Ahmad Aburizaiza, uses Mapbox, Turf, and MongoDB, 
along with existing functionality from the desktop version of the GMU-
GcT (Figure 60). This mobile web application has an advantage of being 
able to utilize the large library of spatial functions from Turf. The use of a 
NoSQL database (MongoDB) has significant performance benefits relative 
to the relational database used in the GMU-GcT and during preliminary 
testing had quick, rapid performance. 

                                                                    
82 http://geo.gmu.edu/vgi/  [accessed November 19, 2015]  
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FFiigguurree  5599..  NNaattiivvee  mmoobbiillee  aapppplliiccaattiioonn  ffoorr  oobbssttaaccllee  eennggaaggeemmeenntt,,  ddeevveellooppeedd  wwiitthh  SSwwiifftt  ffoorr  iiOOSS  
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FFiigguurree  6600..  WWeebb  AApppplliiccaattiioonn  ffoorr  mmoobbiillee  oobbssttaaccllee  iinntteerraaccttiioonn,,  ddeevveellooppeedd  wwiitthh  TTuurrff//MMaappbbooxx  aanndd  
MMoonnggooDDBB  

 

Field studies of obstacle engagement 

Between July 1 and present, the two different GMU-GcT mobile 
applications, referred to hereafter as the MobileApp (for Samuel Ober’s 
Swift-based iOS native app, Figure 59), and WebApp (for Ahmad 
Aburizaiza’s Turf/Mapbox web application, Figure 60) were tested 
extensively, to gauge the ability of a mobile user to receive alerts from each 
of the applications to notify him or her about the presence of an obstacle. 
A study location close to the GMU campus provided access to a dynamic, 
construction-filled environment with several obstacles that had been 
reported to the GMU-GcT repeatedly. Two obstacles were chosen and 
selected for a series of tests in which the end-user would move toward the 
obstacle from different directions. Research assistants would mark the 
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exact location where an obstacle alert was delivered to the end-user’s 
mobile device, and would then measure the distance between this alert 
position and the obstacle. In order to address variables such as canopy 
cover and building heights, one obstacle was chosen in close proximity to a 
3.5-story row of townhouses with an approximate height of 48 feet and 
covered with a tree canopy. Another obstacle was chosen on a walkway 
adjacent to a single-story medical facility, with trees nearby in an area 
characterized as Partial Canopy.  

Based on user needs assessments conducted for this project and discussed 
in Rice et al. (2014), we anticipate that end-users and moderators will 
need to be alerted to obstacles while moving through daily activities at the 
rates of speed similar to walking. Moderators, who may be riding a bicycle 
or moving at a faster speed, will have engagement distances with an even 
greater required alert distance. To explore the delivery of obstacle alerts to 
a moving end-user, a mobile data collection platform was constructed 
from a bicycle with camera and mobile device mounts. This allows an end-
user to interact with a mobile application while riding, and film the 
interaction with a forward looking GoPro camera. A compact screen-
capturing program running on the rear-facing mobile device records 
mobile alerts and user interaction with the mobile applications. Figure 61 
shows this platform, which has an additional USB solar charging capacity 
for mobile devices and a small Bluetooth speaker for auditory cues (not 
pictured). 
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FFiigguurree  6611..  GGMMUU--GGccTT  MMoobbiillee  DDaattaa  CCoolllleeccttiioonn  PPllaattffoorrmm,,  wwiitthh  LLTTEE--eennaabblleedd  mmoobbiillee  ddeevviiccee  aanndd  
ffoorrwwaarrdd  ffaacciinngg  vviiddeeoo  ccaappttuurree  ccaappaabbiilliittyy    

Obstacle engagement dynamics with the GMU-GcT mobile WebApp 

The mobile web application, or WebApp (Figure 60), was coded using 
Mapbox/Turf. It uses data and functionality from the GMU-GcT and uses 
the PostgreSQL database, but copied to a MongoDB NoSQL database to 
increase dynamic performance. The WebApp is responsive and performed 
well in preliminary testing. Because communication between the WebApp 
and the server is more verbose and frequent, we anticipated that there 
would be performance during dynamic field testing. For all dynamic field 
testing, we used four different mobile devices:  an iPhone 5, and iPhone 6, 
an iPhone 6+, and an iPad2. All devices were capable of Long-Term 
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Evolution (LTE) data speeds and all devices used the same mobile service 
provider (AT&T). The two obstacles used in field testing are shown along 
with data summaries in Figure 62 and Figure 63. The field testing protocol 
involved the following steps: 

1.   The obstacle is verified in the GMU-GcT. Any discrepancies or 
errors are corrected before field testing begins.  

2.   The obstacle’s ground center point is marked with tape. 

3.   The WebApp (or MobileApp) is loaded, and screen capture is 
initiated. 

4.   The forward facing camera is enabled and started for video capture. 

5.   The obstacle is approached at walking speed (2-3 mph), along one 
of eight pre-defined and marked directional trajectories (see 
Figures 58 and 59).  

6.   The exact ground point where an obstacle alert is received on the 
mobile device is marked with tape along the trajectory. 

7.   The dynamic alert distance is measured and recorded.  

8.   The process (steps 1-6) is repeated for each of the four mobile 
devices, along each of the eight pre-defined trajectories.  

9.   The process (steps 1-7) is repeated, but at a higher rate of speed (7-
8 mph) using the GMU-GcT mobile data collection platform (Figure 
57). 

10.  The entire process (steps 1-8) is repeated using the MobileApp in 
place of the WebApp. 

With this protocol in place, field testing was begun. Figure 62 shows 
engagement with a sidewalk obstruction consisting of an orange barrel, 
which in later phases was switched by the construction workers to an 
orange cone. This barrel and cone were being used as a marker for 
modifications to the curb and roadway for the nearby Eleven Oaks 
development. Underneath the obstacle picture and summary in Figure 62 
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and Figure 63, obstacle interaction distances and diagrams for a bicycling 
end-user (top), and for a walking end-user (bottom) are shown. The eight 
trajectories for each travel mode are numbered and marked in black, with 
color-coded markers showing the obstacle alert location and lines 
connected the color-coded points to allow for interpretation of shape and 
general device-based interaction dynamics. We also record the average 
interaction distance for each device and for each mode of travel, along with 
a standard deviation. The interaction distances consist of two 
measurements. First, we measure the distance between the end-user and 
the obstacle, which is summarized as ‘average distance to obstacle’. 
Second, we record the distance between the 100-foot buffer (shown as a 
grey arc on the diagrams) and the user, which is summarized as ‘average 
distance from buffer’. These distances sum to 100 feet, which is the total 
distance between the obstacle and the 100 foot buffer.  

For both obstacles for all devices, (Figure 62 and Figure 63) the obstacle 
alert distances for a walking end-user are greater than for a biking end-
user, which was an expected result related to the nature of dynamic 
interaction and the speed with which the WebApp would be able to detect 
and notify the end user. The alternative view of the interaction dynamics 
are that the walking end-user generally receives an obstacle alert closer to 
the intended 100 foot buffer than the bicycling end user. The 100 foot 
buffer and a summary of both interaction distances are contained in all 
obstacle interaction figures.  

For Figure 62 and Figure 63, the obstacle alert distances increase as the 
trajectory moves away from the buildings on the north side (Figure 62) 
and south sides of the road (Figure 63). The fan shape in Figure 63 is 
prominent, with trajectories 4 and 5 having larger interaction distances 
than other trajectories, which is likely related to the decrease in multipath 
error and reflection for positions farther from the buildings. There is no 
apparent ordinal effect related to devices, which all delivered alerts in 
close proximity to one another, with a few exceptions (iPhone 6, biking 
trajectories 2 and 5 in Figure 62, and the iPad 2 trajectory 5 in Figure 63). 
The iPhone 4, used in earlier mobile GPS studies, was not used during our 
mobile obstacle interaction study. The iPhone 6+ was not tested earlier 
with Frechet distances, but was used, along with the iPad 2, in our mobile 
obstacle interaction study. Our goal was to test and experiment with a 
variety of mobile devices, and to explore their limitations under a variety 
of use scenarios and environmental conditions. The testing protocols 
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presented in this chapter and in Chapter 2 will be continued with a variety 
of devices as they become available, and will help us augment our 
knowledge of mobile GPS capabilities and how these capabilities influence 
mobile geocrowdsourcing. 

For the obstacle engagements studies presented here, we used an 
interaction distance of 100 feet (shown in following figures with a 
darkened gray circle). None of the alert distances for the WebApp are close 
to that distance, with the largest alert distance being 79.3 feet (iPhone 6+, 
Figure 63). The total range of alert distances for the WebApp was 48.1 to 
79.3 feet. Figure 64 and Figure 65 show the same obstacle alert distances, 
but broken down by device. Side by side comparisons of the average 
distance ellipses and obstacle alert distances clearly show a decrease 
between walking and biking.  
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FFiigguurree  6622..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  WWeebbAApppp,,  oobbssttaaccllee  336677  ssuummmmaarryy  
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FFiigguurree  6633..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  tthhee  WWeebbAApppp,,  oobbssttaaccllee  1111  ssuummmmaarryy  
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FFiigguurree  6644..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  WWeebbAApppp,,  oobbssttaaccllee  336677  bbyy  ddeevviiccee  
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FFiigguurree  6655..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  WWeebbAApppp,,  oobbssttaaccllee  1111  bbyy  ddeevviiccee  

Obstacle engagement dynamics with the GMU-GcT MobileApp 

The same field testing protocol discussed above was employed to test the 
functionality and obstacle alert distance for the native MobileApp, which 
we anticipated to be more responsive due to the less verbose 
communication required, and an assumption that for the same iOS 
devices, latency would be lower for similar tasks. Jobe (2013) compared 
native mobile and mobile web applications for map-based athletic tracking 
applications in Kenya, finding that “mobile web applications that require 
hardware interaction such as using the GPS, GPU, or camera are not yet 
viable alternatives for native applications.”  He suggests that simpler 
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mobile web applications “that only require a native interface and content 
consumption are suitable substitutes for native applications.”  Clearly, our 
WebApp does need access to the device GPS and is much more than a 
simple reduction of a desktop application to a native interface, and based 
on this, we did expect to see differences. Our purpose in this study, 
however, is not to compare the GMU-GcT WebApp with the GMU-GcT 
MobileApp, but rather to look at what is possible with the two, recognizing 
the strengths of each and assessing what benefits each might provide to for 
an end-user. 

With this in mind, Figure 66 and Figure 67 (similar to Figure 62 and 
Figure 63) contain summaries of the obstacle alert distances for user-
engagement with the same 4 mobile devices, the same 2 obstacles, and the 
same 8 pre-defined trajectories. Figure 68 and Figure 69 contain the same 
side-by-side device and travel mode comparisons. An inspection of the 
figures and the 100 foot gray interaction distance quickly leads to the 
conclusion that the native app is much better at delivering obstacle alerts 
closer to the intended 100 foot interaction distance.  

For reasons that we are not able to yet explain, there are some directional 
asymmetries in the obstacle alert distances, where for Obstacle 367 (Figure 
66) all four devices delivered alerts quicker on the west side (eastbound 
trajectories) than on the eastside (westbound trajectories). Similarly, in 
Figure 67 (biking mode) the MobileApp delivered obstacle alerts more 
quickly on the east side than on the west side. In summary, all obstacle 
alert distances were relatively close to the 100 foot interaction distance, 
with the walking trials being nearly identical for many devices. This is 
clearly seen in Figure 68 and Figure 69, where the colored average 
obstacle alert distance circles entirely (or nearly entirely) overlap the gray 
100 foot interaction distance circle.  

For walking end-users who approach obstacles slowly, this suggests that 
there will be no significant difference depending on the device they use, 
and that alerts should be delivered relatively close to the 100 foot 
interaction distance. For bicycling end-users, obstacle alerts are delivered 
further away from the intended 100 foot distance, and again, there is no 
statistically significant difference for which device they may be using to 
receive alerts, at least among the four that we tested.  
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FFiigguurree  6666..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  MMoobbiilleeAApppp,,  oobbssttaaccllee  336677  ssuummmmaarryy  
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FFiigguurree  6677..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  MMoobbiilleeAApppp,,  oobbssttaaccllee  1111  ssuummmmaarryy  
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FFiigguurree  6688..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  MMoobbiilleeAApppp,,  oobbssttaaccllee  336677  bbyy  ddeevviiccee  
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FFiigguurree  6699..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  wwiitthh  MMoobbiilleeAApppp,,  oobbssttaaccllee  1111  bbyy  ddeevviiccee  

Statistical Summaries for Mobile Obstacle Engagement  

Engagement with the WebApp 

Statistical analysis of the variables and factors in the WebApp portion of 
the field study indicate that the influence of device (iPhone 5, iPhone 6, 
iPhone plus, iPad 2) was not significant when using the WebApp (Figure 
60). The associated analysis of variance (ANOVA) for device resulted in an 
F-statistics of 0.43361 with p-value = 0.7293, at 3 and 124 degrees of 
freedom (Table 10). Although small variations existed between devices 
during the study, no systematic, significant differences existed. The 
graphics presented on the preceding pages do seem to show a difference in 
the obstacle engagement distances for walking and biking, with the 
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distance between the end-user and obstacle being smaller when bicycling. 
This is associated with a larger distance between the intended 100-foot 
warning buffer (shown in gray in Figure 62, Figure 63, Figure 64, Figure 
65) and the point where an obstacle alert was delivered by the WebApp.  

TTaabbllee  1100..  AAnnaallyyssiiss  ooff  VVaarriiaannccee  ffoorr  MMoobbiillee  DDeevviiccee  uussiinngg  WWeebbAApppp  

After a preliminary test for the presence of homogeneity or 
heteroskedasticity in the sample variances (Table 11), a T-test for equality 
of means was conducted, resulting in a large, statistically significant t-
value of 7.037 with p-value = 0.00 and t-critical value of 1.97 (Table 12). 
This suggests that the difference between the bicycling engagement 
distance and the walking engagement distances for the WebApp is 
statistically significant. End-users moving at a walking pace (2-3 mph) and 
using the WebApp receive obstacle warnings much closer to the 100-foot 
interaction buffer than end-users who are moving at a faster rate on a 
bicycle (7-8 mph).  

TTaabbllee  1111..  FF--tteesstt  ffoorr  HHoommooggeenneeiittyy  ooff  VVaarriiaanncceess,,  WWaallkkiinngg  aanndd  BBiikkiinngg  
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TTaabbllee  1122..  TT--tteesstt  ffoorr  EEqquuaalliittyy  ooff  MMeeaannss,,  WWaallkkiinngg  aanndd  BBiikkiinngg  

Finally, a test for the two obstacles shown in this field study indicates that 
the interaction distances for Obstacle 11 (Figure 63, Figure 65, Figure 67, 
Figure 69) are significantly larger (with an observed average of 71.7 
meters) than for Obstacle 367 (Figure 62, Figure 64, Figure 66, Figure 68), 
where an average value of 61.1 was observed. The statistical analysis for 
this difference is shown in Table 13 and Table 14. The reasons for this 
difference are uncertain, and no clear contributing factors have been 
identified.  

Future work on mobile device-based obstacle engagement with the 
WebApp or similar technology would test obstacles in a wide variety of 
settings under a number of different conditions and engagement 
dynamics. The latency associated with the WebApp, discussed earlier, may 
present itself as a temporally-significant covariate, where network 
conditions vary significantly throughout the testing period, impacting the 
ability of the WebApp and leading to temporally-significant dynamics. 
Because absolute time was not recorded as a factor, we cannot test for this 
possible source of variation, but it would be a part of future work. 
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TTaabbllee  1133::  FF--tteesstt  ffoorr  HHoommooggeenneeiittyy  ooff  VVaarriiaanncceess::  OObbssttaaccllee  336677  aanndd  OObbssttaaccllee  1111  

TTaabbllee  1144..  TTeesstt  ffoorr  EEqquuaalliittyy  ooff  MMeeaannss,,  OObbssttaaccllee  336677  aanndd  OObbssttaaccllee  1111  

Engagement with the MobileApp 

Statistical analysis of the field testing and obstacle interactions using the 
MobileApp (Figure 59) yielded results that were similar in some ways and 
different in other ways from the results of the field testing for the WebApp. 
As noted previously, the MobileApp has a more responsive design, and 
because it is deeply integrated with the mobile operating system, it can 
take advantage of interactions, cues, and alert functions from the 
operating system. These same features are not possible with the WebApp. 
Although these advantages do not always lead to more responsive 
performance, field testing with the native MobileApp quickly led to a 
hypothesis that interaction times would be quicker.  

As a first step in our statistical analysis, an ANOVA for device type resulted 
in a conclusion of no significant differences (Table 15). The F-value for this 
test was 0.354 with a p-value of 0.7862 and an associated F-critical value 
of 2.6777, with 3 and 124 degrees of freedom. In summary, none of the 
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mobile devices resulted in interaction distances that were significantly 
different. Small differences in interaction times were observed and are 
presented in Figure 62, Figure 63, Figure 64, and Figure 65, but these 
differences are not statistically significant. In this particular aspect, both 
the WebApp and MobileApp had the same statistical result of no 
significant mobile device differences.  

TTaabbllee  1155..  AAnnaallyyssiiss  ooff  VVaarriiaannccee  ffoorr  MMoobbiillee  DDeevviiccee  uussiinngg  MMoobbiilleeAApppp  

Next, after a preliminary test for homogeneity of sample variances (Table 
16), a T-test for equality of means was conducted, resulting in large, 
statistically significant T-value of 6.894, with p-value 0.000 and an 
associated T critical value of 1.97 (Table 17). This suggests that the 
difference between the bicycling engagement distance and the walking 
engagement distances for the MobileApp is statistically significant, similar 
to the WebApp. End-users moving at a walking page receive obstacle 
notifications much closer to the 100-foot interaction buffer.  

TTaabbllee  1166..  FF--tteesstt  ffoorr  HHoommooggeenneeiittyy  ooff  VVaarriiaanncceess,,  WWaallkkiinngg  aanndd  BBiikkiinngg  
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TTaabbllee  1177..  TT--tteesstt  ffoorr  EEqquuaalliittyy  ooff  MMeeaannss,,  WWaallkkiinngg  aanndd  BBiikkiinngg  

Finally, a test for differences in the interaction times for obstacles was 
performed. After an initial test for homogeneity (Table 18) of sample 
variances, a T-test was performed, resulting in no significant difference 
(Figure 19). In this regard, the MobileApp is different from the WebApp. 
The MobileApp performed similarly for both obstacles, while the WebApp 
did not. Conjecture about this dynamic is broad, but focuses on the 
possibility of temporal variations in cell phone and local network 
performance, which is a critical factor for the WebApp but not as 
influential for the MobileApp, which communicates less frequently with 
our project servers, and does not require server-based calculations or 
feedback.  

TTaabbllee  1188..  FF--tteesstt  ffoorr  HHoommooggeenneeiittyy  ooff  VVaarriiaanncceess::  OObbssttaaccllee  336677  &&  OObbssttaaccllee  00441111  
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TTaabbllee  1199..  TT--tteesstt  ffoorr  EEqquuaalliittyy  ooff  MMeeaannss,,  OObbssttaaccllee  336677  aanndd  OObbssttaaccllee  1111  

Statistical Comparisons of the WebApp and MobileApp 

A view of the distribution of interactions times provided by the Box Plots 
(Figure 70) leads to a preliminary hypothesis that there is a significant 
difference between the mean distances at which an end-user receives an 
obstacle alert notification. As noted previously, the MobileApp, due to its 
design, is more responsive. A statistical validation of this hypothesis is 
seen inTable 20 and Table 21, where a mildly significant F-value (1.56) 
leads to a T-test with accommodations for heteroskedasticity. This T-test 
(Table 21) results in a t-test statistic of 15.38, which is far enough into the 
distributional tail that the p-value is not displayed, other than noted to be 
0. The critical value for this test is 1.969. Clearly, the obstacle notification 
times for the MobileApp are delivered much closer to the 100-foot 
interaction buffer than for the WebApp.  
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FFiigguurree  7700..  BBooxx  PPlloottss  ffoorr  OObbssttaaccllee  IInntteerraaccttiioonn  DDiissttaanncceess,,  WWeebbAApppp  ((lleefftt))  aanndd  MMoobbiilleeAApppp  ((rriigghhtt))  

TTaabbllee  2200..  FF--tteesstt  ffoorr  HHoommooggeenneeiittyy  ooff  VVaarriiaanncceess,,  MMoobbiilleeAApppp  aanndd  WWeebbAApppp  
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TTaabbllee  2211..  TT--tteesstt  ffoorr  EEqquuaalliittyy  ooff  MMeeaannss,,  WWeebbAApppp  aanndd  MMoobbiilleeAApppp  

Dynamic Obstacle Interaction: Video and Demonstration 

Statistical and graphical summaries of the GMU-GcT dynamic obstacle 
engagement study are useful. They indicate a more responsive delivery of 
alerts with the MobileApp, which is due to many of the same issues noted 
by Jobe (2013). The WebApp, with some innate latency, was slower in 
delivering obstacle alerts, which resulted in alert distances between 50% 
and 80% of the intended 100 foot distance. Useful accompaniments to this 
analysis are the following videos (Table 22), which demonstrate the alert 
functionality of the WebApp and MobileApp. The videos contain side-by-
side views of the forward-looking GoPro, and the respective screens of the 
WebApp and the MobileApp, and basic functionality of these software 
packages can be seen. The applications are not commercial software, but 
were coded to provide a proof-of-concept, to provide dynamic extensions 
to the GMU-GcT, and to test the limits of current mobile software 
development environments for geospatial applications. 

TTaabbllee  2222..  OObbssttaaccllee  IInntteerraaccttiioonn  VViiddeeooss  

Web$Application Mobile$Application
Obstacle)367 (westbound) http://geo.gmu.edu/videos/webapp_1.mp4 http://geo.gmu.edu/videos/mobileapp_1.mp4

Obstacle)367 (eastbound) http://geo.gmu.edu/videos/webapp_2.mp4 http://geo.gmu.edu/videos/mobileapp_2.mp4

Obstacle)011 (westbound) http://geo.gmu.edu/videos/webapp_3.mp4 http://geo.gmu.edu/videos/mobileapp_3.mp4

Full$videos$ http://geo.gmu.edu/videos/webapp_full.mp4 http://geo.gmu.edu/videos/mobileapp_full.mp4
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Mobile Routing in the GMU-GcT 

General routing functionality in the GMU-GcT was reviewed by Rice et al. 
(2014)83 and Qin et al. (2015a)84. Recent work has focused on the 
development of mobile routing routines in the GMU-GcT with two 
purposes. First, moderators have an interest in using the MobileApp to 
explore the region, or to purposefully navigate toward and engage with 
obstacles needing moderation. In either case, they are not attempting to 
avoid engagement with obstacles. This exploration functionality in the 
MobileApp allows the moderators to report obstacles using device GPS 
location, attach photographs, and perform quality assessments. Second, 
some end-users have an interest in defining routes that avoid obstacles, 
stairs, and steep paths, recognizing that this mode frequently results in 
longer shortest cost paths (as presented in the next chapter). The GMU-
GcT uses a default mode titled ‘Explore’ where routes are not defined. 
With a simple finger tap on the route button at the top of the MobileApp 
(Figure 59, Figure 60), end-users can select between a standard shortest 
cost path route, and an obstacle-avoiding route. In this mode, obstacles 
will not be directly engaged because pedestrian network segments 
containing obstacles will not be used. Our general analysis of routing is 
contained in the next chapter (Chapter 5), and views of the ‘Explore’ and 
‘Route’ functionality are shown in Figure 71 and Figure 72, respectively. 
These examples of GMU-GcT were generated with the MobileApp running 
on an iPad.  

                                                                    
83 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed,” 201. 

84 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
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FFiigguurree  7711..  DDyynnaammiicc  OObbssttaaccllee  EEnnggaaggeemmeenntt  iinn  GGMMUU--GGccTT  MMoobbiilleeAApppp,,  iinn  ""EExxpplloorree""  mmooddee  ((iiPPaadd))  
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FFiigguurree  7722..  DDyynnaammiicc  oobbssttaaccllee  eennggaaggeemmeenntt  iinn  GGMMUU--GGccTT  MMoobbiilleeAApppp,,  iinn  rreegguullaarr  ""RRoouuttee""  mmooddee  
((iiPPaadd))  

The next chapter addresses an important extension of the GMU-GcT in the 
area of routing, which is premised on our past work (and work presented 
in this report) on quality assessment and social moderation. We discuss 
how the GMU-GcT provides an ability to analyze accessibility routing in 
the local area. This work builds on earlier work presented in Rice et al. 
(2012b, 2013b, 2014)85,86,87 and Qin et al. (2015a).88 

 

                                                                    
85 Rice et al., “Crowdsourced Geospatial Data: A Report on the Emerging Phenomena of Crowdsourced 

and User-Generated Geospatial Data.” 
86 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
87 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 

Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed.” 

88 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
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5   Dynamic Use of the GMU 
Geocrowdsourcing Testbed: Routing 
Analysis 

Obstacle Avoidance Routing in Pedestrian Networks  

This chapter addresses an important dynamic use of the GMU-GcT: the 
ability to generate obstacle-avoidance routes across the local pedestrian 
network using geocrowdsourcing, quality assessment, and basic 
information about the accessibility of the pedestrian network. To articulate 
how this dynamic GMU-GcT functionality works, we present the 
generation of the current, underlying pedestrian network, the basic 
characteristics of this network, the geocrowdsourced obstacles, and their 
corresponding influence on routing results. As reviewed in Rice et al. 
(2013a, 2013b)89,90 and Qin et al. (2015a)91, capturing and documenting 
obstacle information on pedestrian pathways can be difficult and time 
consuming, depending on the design of the system and data model 
specifications. Formal approaches for modeling accessibility obstacles, 
such as those proposed by Laakso et al. (2013)92 and Chen et al. (2015)93 
are thorough, but not well adapted for transient events. A crowdsourcing 
approach with a relatively less structured, flexible workflow for collecting 
transient obstacle and infrastructure data has shown to be effective in our 
local area (Paez 2014, Rice 2015)94,95. This approach presupposes an 
effective quality assessment implementation, where a team of moderators 
performs a quality check on crowdsourced data. The quality of this 
moderation approach has been addressed in Chapter 3 of this report. 

                                                                    
89 Rice et al., “Crowdsourcing Techniques for Augmenting Traditional Accessibility Maps with Transitory 

Obstacle Information.” 
90 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
91 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
92 Mari Laakso et al., “An Information Model for Pedestrian Routing and Navigation Databases 

Supporting Universal Accessibility,” Cartographica: The International Journal for Geographic 
Information and Geovisualization 48, no. 2 (2013): 89–99. 

93 Min Chen et al., “An Object-Oriented Data Model Built for Blind Navigation in Outdoor Space,” Applied 
Geography 60 (2015): 84–94. 

94 Paez, “Recruitment, Training, and Social Dynamics in Geo-Crowdsourcing for Accessibility.” 
95 Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping Applications: A George 

Mason University Case Study.” 
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Two obstacle types are collected by the GMU-GcT: permanent obstacles 
and transient obstacles. Permanent obstacles include stairways or steps, 
paths with a steep slope, narrow sidewalks, crosswalks, curb cuts, pathway 
surface conditions (such as gravel, cobble stones, etc.), protrusions, and 
urban furniture (such as a trash cans, benchs, or tables blocking a 
pathway). Transient obstacles include vehicles, construction detours, 
construction barricades, temporary fencing and barriers related to crowds 
or special events. These transient obstacles are crowdsourced and checked 
by moderators.  

Pedestrian Networks 

Based on a review of pedestrian routing across several large online 
mapping websites (Qin et al. 2015a)96 it is known that many routing 
services for pedestrians utilize roadways instead of sidewalks. Presumably, 
this is due to the difficulty of assembling the underlying data for an 
effective pedestrian network, which would -- at a minimum -- include 
sidewalk centerlines and crosswalks. Figure 73 shows a typical Google 
Maps example for routing between two proximate buildings on the GMU 
university campus, with routing on maps and written directions. For 
mobility and visually impaired users, the routing shown is not adequate. 
Sidewalk centerlines and crosswalks, if they exist and are used in the 
routing process, are not sufficient by themselves. Mobility and visually 
impaired users also require information about the presence of ramps, curb 
cuts, running and cross slope along the pedestrian network, sidewalk 
widths, and the accessibility of crossing transition points. These items are 
difficult to collect and are generally not included in standard pedestrian 
routes such as those shown in Figure 73.  

 

                                                                    
96 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
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FFiigguurree  7733..  GGooooggllee  MMaappss  ppeeddeessttrriiaann  rroouuttiinngg  oonn  tthhee  GGMMUU  CCaammppuuss  ((SSeepptteemmbbeerr  22001144))  

An exemplar for accessible routing that includes some accessibility-related 
data is the Accessible Paths in Pinhel Web Portal, where information about 
sidewalk widths, surface conditions, and running slope are used to 
generate an accessible route.97  For the local area, the only pedestrian 
infrastructure data that existed prior to this project was an incomplete 
ArcGIS dataset with selected sidewalk edges, digitized by the Fairfax 
County GIS Team using the Virginia Base Mapping Program (VBMP) 
Orthoimagery collected and provided by the Virginia Information 
Technologies Agency (VITA).98  Using this preliminary dataset as a guide, 
along with some incomplete sidewalk data from the GMU campus, a 
detailed pedestrian network and supporting datasets were generated to 
support this research, as discussed in Rice et al. (2013b)99.  

The pedestrian network generated for this project (Figure 74) was digitized 
from the existing incomplete sidewalk datasets and VBMP orthoimagery, 
and incorporated into the GMU-GcT, as noted in Rice et al. (2013b)100 and 
Qin et al. (2015a)101. The pedestrian network encompasses the GMU 
campus and adjacent portions of Fairfax County and the City of Fairfax. 
The selected study area was chosen in collaboration with City of Fairfax 
and GMU Campus planning and transportation agencies to represent 
common origin and destination points for commuters, including blind, 

                           
97 http://percursos.pinhel.proasolutions.pt/ [accessed August 23, 2015] 
98 http://www.vita.virginia.gov/isp/default.aspx?id=8412  [accessed August 23, 2015] 
99 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
100 Ibid. 
101 Qin et al., “Geocrowdsourcing and Accessibility for Dynamic Environments.” 
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visually-impaired, and mobility-impaired users that walk, ride shuttles, or 
commute to campus.  

 

FFiigguurree  7744..  AA  sseeccttiioonn  ooff  tthhee  ppeeddeessttrriiaann  nneettwwoorrkk  ffoorr  tthhee  llooccaall  aarreeaa  ((iinn  yyeellllooww))..  

The pedestrian network in the GMU-GcT includes sidewalk centerlines, 
stairs, steps, steep paths (with greater than 1:12 slope), crosswalks, and 
curb cuts. The embedded pedestrian network contains 3,489 network 
segments covering an area of 5.97 square miles, centered on the GMU 
Campus and the City of Fairfax.  

Pedestrian Network Coverage 

Figure 75 shows the roadways in the study areas without adjacent 
sidewalks, and Figure 76 shows an alternative representation with 
pedestrian-inaccessible areas of the region masked with polygons. The 
total length of roadways in the study area is 187.2 kilometers and the total 
length of the pedestrian network (Figure 74), with both sides of the 
roadways included, is 230.0 kilometers. The total length of the pedestrian-
inaccessible roadways (Figure 75) is 58.8 kilometers, or 31.4% of the total 



 105 

roadway length. This number appears consistent with the observed 
conditions in the field study area. 

 

 

FFiigguurree  7755..  RRooaaddss  ((iinn  bbllaacckk))  wwiitthhoouutt  aaddjjaacceenntt  ssiiddeewwaallkkss  ((aatt  lleefftt,,  wwiitthh  aallll  rrooaaddss,,  aanndd  iissoollaatteedd,,  aatt  
rriigghhtt))  

 

 

FFiigguurree  7766..  PPeeddeessttrriiaann--iinnaacccceessssiibbllee  rreeggiioonnss  mmaasskkeedd  wwiitthh  ppoollyyggoonnss  
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Obstacles and their Influence on the Accessible Pedestrian Network 

Figure 77 and Figure 78 show the distribution of stairs, steep paths, and 
crowdsourced obstacles in the GMU-GcT. For the density of buildings and 
terrain variability, the stairs and steep paths are more heavily 
concentrated on the GMU campus and at one notable section in downtown 
City of Fairfax.  

 

FFiigguurree  7777..  LLooccaattiioonn  ooff  SSttaaiirrss  aanndd  SStteeeepp  ppaatthhwwaayyss  ((bbuuffffeerreedd  ffoorr  vviissiibbiilliittyy)),,  wwiitthh  ppeeddeessttrriiaann  
nneettwwoorrkk  ((lleefftt))  aanndd  iissoollaatteedd  ((rriigghhtt))  
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FFiigguurree  7788..  LLooccaattiioonn  ooff  OObbssttaacclleess  iinn  tthhee  GGMMUU  GGeeooccrroowwddssoouurrcciinngg  TTeessttbbeedd,,  aass  ooff  OOccttoobbeerr  1100,,  
22001144  

Figure 79 and Figure 80 show the segments of the pedestrian network that 
were impacted by the presence of stairs, steep paths, and transient 
obstacles, and include many lengthy segments in the central 
transportation axis from the downtown City of Fairfax through the center 
of the George Mason University campus. The total length of pedestrian 
network segments currently impacted by stairs and steep paths, and 
transient obstacles is 14.1 kilometers, or 6.1% of the total length of the 
pedestrian network. While this proportion seems rather small, the 
distribution of impacted segments can, and does, have a significant 
influence on the accessible routes, as seen in the next section.  
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FFiigguurree  7799..  LLooccaattiioonn  ooff  ppeeddeessttrriiaann  nneettwwoorrkk  sseeggmmeennttss  iimmppaacctteedd  bbyy  oobbssttaacclleess,,  wwiitthh  ppeeddeessttrriiaann  
nneettwwoorrkk  ((lleefftt))  aanndd  iissoollaatteedd  ((rriigghhtt))  

 

FFiigguurree  8800..  LLooccaattiioonn  ooff  ppeeddeessttrriiaann  nneettwwoorrkk  sseeggmmeennttss  iimmppaacctteedd  bbyy  SSttaaiirrss  aanndd  SStteeeepp  PPaatthhss  
((ppuurrppllee)),,  aanndd  OObbssttaacclleess  ((rreedd)),,  wwiitthh  ppeeddeessttrriiaann  nneettwwoorrkk  ((lleefftt))  aanndd  iissoollaatteedd  ((rriigghhtt))  

 

Routing and Accessibility Dynamics 

It is possible for a given route chosen by a pedestrian to begin and end 
anywhere within the pedestrian network. In order to capture this diversity 
of possible routes, this research employed all network junctions as poten-
tial start and end points of pedestrian trips. The underlying pedestrian 
network (Figure 74) contains 2,772 junctions, which generate 7,681,212 
origin-destination pairs. The majority of these pairs produce routing re-
sults under normal conditions, while more than 1/8 origin-destination 
pairs failed to route, which is indicative of the normal topological disrup-
tions of a real-world pedestrian network, where segments of the network 
are topologically stranded from larger sections.  
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In order to study the general accessibility characteristics of the study area, 
a routing analysis was constructed under three general conditions. The 
first condition is an initial unrestricted condition, using every possible 
pairwise combination of network junctions. This represents routing across 
the entire pedestrian network without any accessibility constraints 
imposed, and resulted in 6,683,094 successful routes and an average route 
length of 1,834.7 meters (Table 23). The second condition is one in which 
the network is restricted by stairs and steep paths. This condition 
represents the most common general accessibility routing approach not 
taking into account transient obstacles. This resulted in 4,381,686 
successful routes and an average route length of 2,121.23 meters, or an 
increase of 15.62% from the unrestricted condition (Table 23). As the most 
restrictive condition, the third condition is one in which the network is 
restricted by stairs, steep paths, and transient obstacles. This condition is 
the closest to reality for many of the end-users interviewed for our 
research (Rice et al. 2013a, 2014). This resulted in 3,868,459 successful 
routes and an average route length of 2,215.5 meters, or an increase of 
20.76% above the unrestricted condition (Table 23). 

TTaabbllee  2233..  SSuummmmaarryy  RReessuullttss  ooff  RRoouuttiinngg  AAnnaallyyssiiss  

Three routing result scenarios are presented in Figure 81, Figure 82, and 
Figure 83, on the following pages. They represent a range of characteristic 
results for the three scenarios in this study. They include routing with 
modest (Figure 81), substantial (Figure 82), and immense (Figure 83) 
increases in path length under the three conditions, with accessibility 
restriction increasing. Figure 81 shows an initial routing scenario from an 
origin to a destination 1,982 meters away. This route takes the user 
directly through the center of the GMU campus. When stairs and steep 
paths are restricted, the shortest cost path increases by 4.4% to 2,070 
meters, which represents a small reroute or deviation from the shortest 
cost path. The more restrictive condition, where transient obstacles are 
used to eliminate additional network segments, increases the length of the 
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path to 2,115 meters, a 6.7% increase over the least restrictive condition. 
This represents many routing scenarios encountered in our system, where 
routing around stairs, steep paths, and obstacles requires a modest 
increase in path length. 

 

FFiigguurree  8811..  RRoouuttiinngg  sscceennaarriioo  11::  mmooddeesstt  rroouuttee  lleennggtthh  iinnccrreeaassee  

Figure 82 shows a route from the study with a substantial path increase 
under restrictive accessibility conditions. The first condition (no 
restrictions) results in a path length between origin and destination of 
1,319 meters. Under the second condition (stairs and steep paths 
restricted), the path length changes modestly, increasing to 1,432 meters 
or 8.6%. Under the third condition (stairs, steep paths, and transient 
obstacles restricted) the path length increases substantially to 4,065 
meters, for an increase of 208.2%. This increase is due to transient 
obstacles along a main road, resulting in a long route around an entire 
neighborhood, to arrive at a destination close to the south side of the study 
area. This substantial increase in the length of an accessible path happens 
when transient obstacles impact critical areas with poor sidewalk 
coverage.  

 

No Restrictions Stairs and Steep Paths Restricted Stairs, Steep Paths, and 
Obstacles Restricted

1,982 m 2,070 m 2,115 m+ 4.4% + 6.7%

200         400 m 200         400 m 200         400 m 
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FFiigguurree  8822..  RRoouuttiinngg  sscceennaarriioo  22::  ssuubbssttaannttiiaall  rroouuttee  lleennggtthh  iinnccrreeaassee 

Figure 83 shows the progression from normal conditions to restrictive 
accessibility conditions in one of the most unusual examples covered by 
this study. The figure shows a short route from an origin and destination 
69 meters apart, under no restrictions. Imposing the second condition 
(stairs and steep paths restricted) yields an enormous increase in length, 
to 1,052 meters or an increase of 1421%. The route is increased even 
further by the imposition of the third condition (stairs, steep paths, and 
transient obstacles restricted), with a final route of 1,294 meters, or 1915% 
above the initial route length. Inspection of this scenario allows us to 
conclude that an unusual combination of stairs, steep paths, obstacles, and 
man-made features (buildings) causes a reroute of unusual length. This 
scenario is rare, and represents one of the worst cases of route length 
increase in the GMU study area under restrictive accessibility conditions.  

 

FFiigguurree  8833..  RRoouuttiinngg  SScceennaarriioo  33::  IImmmmeennssee  rroouuttee  lleennggtthh  iinnccrreeaassee  

 

No Restrictions Stairs and Steep Paths Restricted Stairs, Steep Paths, and 
Obstacles Restricted

1,319 m 1,432 m  4,065 m+ 8.6% + 208.2%

   300       600 m    300       600 m    300       600 m

No Restrictions Stairs and Steep Paths Restricted Stairs, Steep Paths, and 
Obstacles Restricted

69 m 1,052 m 1,294 m+ 1421% + 1915%

   150             300 m    150             300 m    150             300 m
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Discussion 

Routing in the GMU campus region is difficult due to the overwhelming 
emphasis on vehicular transportation as the preferred mode of transit. 
While portions of the local area are urbanized and walkable (notably the 
City of Fairfax), other portions of the study area remain largely 
inaccessible due to the lack of sidewalks along roadways, lack of curb cuts 
and connecting crossing points, and the presence of transient obstacles. 
Figure 24 shows that large portions of the study area are inaccessible due 
to the lack of sidewalks and other infrastructure such as curb cuts and 
crosswalks. Figure 28 shows that large portions of the study region with 
sidewalks are in fact inaccessible for many individuals because of the 
presence of stairs, steep paths, and transient obstacles that block access to 
the pedestrian network. These transient obstacles have a very large impact 
on the accessibility of the local area. Figure 81, Figure 82, and Figure 83 
demonstrate some of the characteristic results of imposing accessibility 
constraints on routing.  

The routing analysis demonstrates that restricted routing (without using 
stairs and steep paths) substantially increases the route length. Under this 
restricted routing condition, the average path length increase for the study 
was 15.62% above normal (unrestricted) conditions. For the third 
condition (stairs, steep paths, and obstacles restricted) the average path 
length increased 20.76% above normal (unrestricted) conditions. This 
impact is felt directly by blind, visually-impaired, and mobility-impaired 
individuals who require accessible sidewalks, but it is also felt by senior 
citizens, families with strollers, and individuals with minor and temporary 
mobility impairments.  

Church and Marston (2003)102 note that route choice is highly individual, 
and that traditional accessibility measures do not take into account the 
significant physical and mobility differences of individuals. Their 2003 
study demonstrated these individual differences in four individually-
selected routing results between the same origin and destination with 
lengths varying from 198 meters to 610 meters. This 308% increase, due to 
individual preferences, was reported to represent common variation 
between individuals. Interviews with end-users of the GMU-GcT included 
anecdotal information confirming the large individual variation in routing 

                                                                    
102 Richard L. Church and James R. Marston, “Measuring Accessibility for People with a Disability,” 

Geographical Analysis 35, no. 1 (2003): 83–96. 
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preferences, due to conditions such as tree cover, sunlight, ambient 
temperature, and minor variations in cross slope (Rice et al. 2014, Figure 
84). This individual variation in routing preference makes a single 
accessible routing portal difficult to implement, unless extensive routing 
customization is allowed for each user. Recent efforts have taken 
individual preferences into consideration in the routing process, such as 
the work of Karimi et al. (2014)103 and the Pinhel Accessibility Platform 
(2014).  

 

FFiigguurree  8844..  IInnddiivviidduuaall  rroouuttee  pprreeffeerreennccee  ((ggrreeeenn))  aanndd  tthhee  sshhoorrtteesstt  ccoosstt  ppaatthh  ((bblluuee)),,  ffrroomm  RRiiccee  eett  
aall..  22001144..  

Summary 

New applications involving distributed services (such as Thatcher 2013)104 
are a developing theme in geocrowdsourcing, as are analysis performed 
with volunteered and ambient data. This chapter presents a detailed 
routing analysis performed with geocrowdsourced obstacle data and 
accessibility infrastructure data, but collected and integrated into the 
GMU-GcT. While the analysis here identified the individual routes 
influenced by barriers to pedestrian travel and summarized the impact on 
the network as a whole, it has treated each individual path as if it were 

                           
103 Hassan A. Karimi, Lei Zhang, and Jessica G. Benner, “Personalized Accessibility Map (PAM): A Novel 

Assisted Wayfinding Approach for People with Disabilities,” Annals of GIS 20, no. 2 (April 3, 2014): 99–
108, doi:10.1080/19475683.2014.904438. 

104 Thatcher, “From Volunteered Geographic Information to Volunteered Geographic Services.” 
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equally important from the perspective of pedestrian demand. Further 
research can be envisioned that will enumerate the actual, or likely, routes 
to be taken by the typical daily pedestrian population and as a special case, 
by the disabled population. Once routing dynamics are identified, a more 
robust measure of the magnitude of the problems caused by stationary and 
transient obstacles can be determined. Comparisons of shortest-cost 
routes with actual routes, and the specific differences between the two 
would yield important data about routing preference. Furthermore, 
knowing the demand for routes, and the set of obstacles causing variable 
interference on those routes would permit an investigation of which 
obstacles to remove under limited funding conditions. One can imagine an 
optimization problem that would direct the planning for network update 
and maintenance. The expanding and growing university and local urban 
area and concomitant interest in multimodal transportation patterns 
makes an expansion of this routing analysis a worthwhile future activity. 
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6   Conclusions and Future Prospects for 
Crowdsourced Geospatial Data  

 

The purpose of this chapter is to reflect on the research contributions of 
this project, and the general developments in geocrowdsourcing. As noted 
in Sui et al. (2013)105, rapid developments in technology, including smart 
phones, GPS, distributed sensor networks, and cloud computing, have 
radically transformed the way geographic data are collected, stored, 
analyzed, and used. The former definition of what could be considered 
geospatial data, based on traditional cartographic production processes 
has dramatically changed. Several authors have captured and articulated 
this dynamic. In addition to Sui et al. (2013) and many of the chapters in 
their book, we recommend Elwood (2010)106 and Elwood et al. (2012)107 
for the way that the authors analyze and synthesize technological, cultural, 
and social aspects of geocrowdsourcing.  

A major concern cited by Goodchild (2007)108 is the quality and reliability 
of volunteered geographic information (VGI). To provide a context for 
discussing quality assessment in geocrowdsourced data, Rice et al. 
(2012b)109 summarize the National Map Accuracy Standards (NMAS)110 
from 1947 and the more recent National Standard for Spatial Data 
Accuracy (NSSDA)111 developed by the Federal Geographic Data 
Committee (FGDC) for addressing the quality assessment of digital 
geospatial data. These general standards, and approaches for quality 

                                                                    
105 Sui,	
  Elwood,	
  and	
  Goodchild,	
  Crowdsourcing	
  Geographic	
  Knowledge	
  Volunteered	
  Geographic	
  
Information	
  (VGI)	
  in	
  Theory	
  and	
  Practice. 

106 Sarah Elwood, “Geographic Information Science: Emerging Research on the Societal Implications of 
the Geospatial Web,” Progress in Human Geography 34, no. 3 (2010): 349–57. 

107 Sarah Elwood, Michael F. Goodchild, and Daniel Z. Sui, “Researching Volunteered Geographic 
Information: Spatial Data, Geographic Research, and New Social Practice,” Annals of the Association 
of American Geographers 102, no. 3 (May 2012): 571–90, doi:10.1080/00045608.2011.595657. 

108 Goodchild,	
  “Citizens	
  as	
  Sensors:	
  The	
  World	
  of	
  Volunteered	
  Geography.” 
109 Rice	
  et	
  al.,	
  “Crowdsourced	
  Geospatial	
  Data:	
  A	
  Report	
  on	
  the	
  Emerging	
  Phenomena	
  of	
  Crowdsourced	
  

and	
  User-­‐‑Generated	
  Geospatial	
  Data.” 
110 “United States National Map Accuracy Standards” (U.S. Bureau of the Budget, 1947), 

http://nationalmap.gov/standards/pdf/NMAS647.PDF. 
111 U.S. Geological Survey, “Geospatial Positioning Accuracy Standards, Part 3: National Standard for 

Spatial Data Accuracy,” Federal Geographic Data Committee, August 19, 2008. 
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assessment from the 1980s and 1990s, were used extensively during the 
era when quality assessment and accuracy of digital GIS data was a 
primary research theme. Notable publications from this era include 
Veregin and Hunter (1998)112, Goodchild and Gopal (1989)113, and Guptill 
and Morrison (1995)114. Many of the recent research papers in quality 
assessment for geocrowdsourced data (i.e., Haklay 2010, Girres and Touya 
2010) refer back to these earlier traditional GIS-based quality assessment 
works.115,116 We wonder how far the traditional approaches for quality 
assessment can be stretched to fit what is emerging in geocrowdsourcing 
and geosocial media.  

While it is easy to see the influences and sensibility of NMAS, NSSDA, and 
GIS quality assessment approaches in Girres and Touya (2010)117, these 
approaches begin to crumble when faced with unstructured geosocial 
media and aggregations of geocrowdsourced and linked data. 
Measurements related to horizontal positional accuracy begin to lose 
meaning when dealing with disparate collections of semi-structured 
geocrowdsourced data and unstructured geosocial media.  

Accepting that quality assessment methods will need to expand to 
accommodate new sources of data and new combinations of existing data, 
seems to be a common theme of conversation at academic conferences and 
university hallways. One approach, discussed in Rice et al. (2012b) is to 
consider fitness-for-use and risk analysis criteria when using 
geocrowdsourced data or geosocial media. Is the new source of data or 
information useful?   Can it address the geographic question or problem?   
If the new source of data is incorrect, what will the consequence be?  Do 
the generally low costs of geocrowdsourced data merit consideration in 
some less critical roles, for instance, in validating, improving, or updating 
traditional geospatial data sources (e.g., McCartney et al. 2015)?118  In 

                                                                    
112 Howard Veregin and Gary Hunter, “Data Quality Measurement and Assessment,” Educational 

resource, The NCGIA Core Curriculum in GIScience, (1998), 
http://www.ncgia.ucsb.edu/giscc/units/u100/u100_f.html. 

113 Michael	
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  Goodchild	
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  Accuracy	
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  (London;	
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116 Girres and Touya, “Quality Assessment of the French OpenStreetMap Dataset.” 
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some applications and settings, such as in disaster response (Zook et al. 
2010)119, authoritative data may not exist, and there are no other 
reasonable options.  

The quality assessment approach taken in this research (Rice 2013b, 
2014)120,121, is similar to Girres and Touya in that it adapts a GIS-centric 
quality assessment approach to semi-structured geocrowdsourced data. 
This approach is feasible, yet there are weaknesses. The social moderation 
approach presented by Goodchild and Li (2012)122  and implemented in 
this research (Rice 2015)123 relies on a team of well-trained moderators, 
whose judgment is accepted as a replacement for ground truth. A 
contribution of this report and a benefit of our research is the first large-
scale study of positional accuracy for social moderation, conducted by Ms. 
Rebecca Rice as a part of an MS Thesis project (2015)124. As presented in 
summarized form in Chapter 2, the social moderation process 
implemented in the GMU-GcT results in positional accuracies between 
2.12 and 5.55 meters, depending on whether the reported obstacle is more 
similar to a point, or polygon. Rice (2015) finds the positional accuracy for 
the social moderation in the GMU-GcT to be equivalent or better than 
similar positional assessments of geocrowdsourced data, as summarized in 
Chapter 3 of this report. 

An important aspect of the success for a geocrowdsourcing project is 
whether or not the project is able to attract a committed user base. While 
applications such as Waze count end-users and contributors in the tens of 
millions, the GMU-GcT has a user contributor pool counted in the high 
double digits. Our area of interests, geographic scope, and goals are 
substantially different. Throughout the duration of this project, outside 
reviewers and collaborators have encouraged us to both radically simplify, 
and substantially ‘gamify’ the GMU-GcT in order to attract contributors. 
                                                                    
119 Matthew Zook et al., “Volunteered Geographic Information and Crowdsourcing Disaster Relief: A Case 

Study of the Haitian Earthquake,” World Medical & Health Policy 2, no. 2 (July 21, 2010): 6–32, 
doi:10.2202/1948-4682.1069. 

120 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 
Design, Creation and Assessment of a Testbed Environment for Accessibility.” 

121 Rice et al., “Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A 
Report on the Development and Extension of the George Mason University Geocrowdsourcing 
Testbed.” 

122 Goodchild and Li, “Assuring the Quality of Volunteered Geographic Information.” 
123 Rice, “Validating VGI Data Quality in Local Crowdsourced Accessibility Mapping Applications: A 

George Mason University Case Study.” 
124 Ibid. 
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They suggest that if the contribution process is quick, easy, and fun, the 
number of contributors will grow. Making a substantial change in the 
direction of the GMU-GcT was difficult, particularly with four years of 
scheduled research deliverables that could not otherwise have been met. 
One suggested incarnation of the GMU-GcT is as an Instagram-style 
application that focuses nearly exclusively on the image. We have 
determined and noted that the image is by far the most important aspect 
of a geocrowdsourced contribution to the GMU-GcT, as the image itself 
and the content of the image header contain a wealth of validation 
information. Preliminary work to extract information from submitted 
images is presented in Chapter 3, during discussion of multiposition 
validation. It would be feasible to completely redesign the GMU-GcT to 
focus on image contribution with a short twitter-length message. The most 
important triple of geographic information (location, time, attribute) could 
be derived automatically from the image, short message, and from the web 
submission or mobile submission process. Any extra information needed 
could be geocrowdsourced from the contributor community. While an 
extensive quality assessment procedure would be missing, a greater 
purpose might be served by radically increasing the volume and coverage 
of the GMU-GcT. The trade-offs might make this new direction 
worthwhile.  

Another important conclusion of the research contributors to this project 
is a recognition of the extent to which mobile devices have become the 
near complete focus for geocrowdsourcing. Many of the elements built into 
our original GMU-GcT (reviewed in Rice et al. 2013b)125 were focused on 
web-based contributions done with a desktop computer. The design of the 
contribution tools changed over time but preserved this desktop focus, as 
did the moderation tools, routing tools, and visualization tools. The recent 
switch to mobile development, and the exploration of the limitations and 
capabilities of mobile devices (discussed in Chapter 2) caused us to make 
fundamental changes to the GMU-GcT and the workflows for moderation 
and quality assessment. These changes have been positive, as they allow 
geocrowdsourcing, quality assessment, and moderation to be done from 
the field rather than from the office. Authors such as Muehlenhaus 
(2013)126, recognize this fundamental shift toward mobile devices for web 
mapping and geocrowdsourcing. Chapter 2 of this report contains many 
                                                                    
125 Rice et al., “Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, 

Design, Creation and Assessment of a Testbed Environment for Accessibility.” 
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useful insights into the basic capabilities and limitations of GPS-enabled 
mobile devices, and how well they function in dynamic settings.  

We welcome readers of this report to send feedback and communicate 
with us through the project Principal Investigator, Dr. Matt Rice.127  

                                                                    
127 Email:  rice@gmu.edu 
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